Open Access
Issue
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
Article Number 16008
Number of page(s) 8
Section Passive, active and NZEB buildings
DOI https://doi.org/10.1051/e3sconf/202017216008
Published online 30 June 2020
  1. H. Rehman, J. Hirvonen, K. Sirén. Renew. Energy, Vol. 113 (2017) [Google Scholar]
  2. A. Gabrielsson, M. Lehtmest, L. Moritz, U. Bergdahl. Heat storage in soft clay. Field tests with heating (70 °C) and freezing of the soil. Swedish Geotechnical Institute. Report 53 (1997) [Google Scholar]
  3. M. Reuss, M. Beck, J.P. Muller. Solar Ener. Vol. 59, Nos. 4-6, pp. 247 257 (1997) [CrossRef] [Google Scholar]
  4. https://www.turku.fi/en/new-turku-market-square/traffic/public-transport [Google Scholar]
  5. Statistics Finland (Preliminary population structure by Month, Area, Sex and Information). http://pxnet2.stat.fi/PXWeb/pxweb/en/StatFin/StatFin__vrm__vamuu/statfin_vamuu_pxt_11lj.px/table/tableViewLayout1/ [Google Scholar]
  6. N. Bobylev. Land Use Pol., 26 (4), pp. 1128-1137 (2009) [CrossRef] [Google Scholar]
  7. Y. K. Qiao, F. L. Peng, S. Sabri, A. Rajabifard. Sust. Cities and Society, 101757 (2019) [CrossRef] [Google Scholar]
  8. X. Li, C. Li, A. Parriaux, W. Wu, H. Li, L. Sun, C. Liu. Tunnelling and Underground Space Tech., 55, pp. 59-66 (2016) [CrossRef] [Google Scholar]
  9. H.Li, X.Li, C.K. Soh. Tunnelling and Underground Space Tech., 55, pp. 67-82 (2016) [CrossRef] [Google Scholar]
  10. M.R. Doyle. Tunnelling and Underground Space Tech., 55, pp. 83-95 (2016) [CrossRef] [Google Scholar]
  11. J.B.M. Admiraal. Tunnelling and Underground Space Technology. 21. 464-465. 10.1016/j.tust.2005.12.102. (2006) [CrossRef] [Google Scholar]
  12. K. Matsushita, S. Miura, T. Ojima. Tunnelling and Underground Space Tech., 8 (1), pp. 65-73 (1993) [CrossRef] [Google Scholar]
  13. H. Xue, J.C. Ho. Tunnelling and Underground Space Tech., 15 (1), pp. 101-115 (2000) [CrossRef] [Google Scholar]
  14. J.C. Ho, H. Xue, K.L. Tay. Building and Env., 39 (1), pp. 67-75 (2004) [CrossRef] [Google Scholar]
  15. P. J. Tulpule, V. Marano, S. Yurkovich, & G. Rizzoni. Applied Energy, 108, pp. 323-332 (2013) [Google Scholar]
  16. Energy efficient garage, https://patents.google.com/patent/US8650814B2/en [Google Scholar]
  17. R. A. Kramer. Energy eng., 104 (6), pp. 23-38 (2007) [CrossRef] [Google Scholar]
  18. H. Brandl. Géotechnique, 56 (2), pp. 81-122 (2006) [Google Scholar]
  19. Turku City Board desicion, 9th Feb 2015 https://www.turku.fi/en/housing-and-environment/environment/sustainable-development [Google Scholar]
  20. D. Pahud, A. Fromentin, M. Hubbuch. Heat exchanger pile system of the dock Midfield at the Zürich airport. Detailed simulation and optimisation of the installation. Project report (1999) [Google Scholar]
  21. Y. Hamada, H. Saitoh, M. Nakamura, H. Kubota, K. Ochifuji. Energy and Build., 39 (5), pp. 517-524 (2007) [CrossRef] [Google Scholar]
  22. T.D. Atmaja, R. Rahmayanti, V. Susanti, S. Utomo, D. Andriani, A.P. Wibawa, M. Mirdanies, H.M. Saputra, A. Santoso. Study on Energy Management System for Energy Saving on Semi Underground Rotary Parking Lot. International Conference on Sustainable Energy Engineering and Application 167-212 (2018) [Google Scholar]
  23. R. Lautkankare, N. Salomaa, T. Arola, J. Lehtonen. Conference proceedings IFCEE: Recent Developments in Geotechnical Engineering Practice (2018) [Google Scholar]
  24. D. Mangold, T. Schmidt, A. Dohna, D. Späh. Guideline for seasonal thermal Energy Storage systems to built environment, Solites, Steinbeis Research Institute for Solar and Sustainable Thermal Energy Systems, EU-FP7 project (2016) [Google Scholar]
  25. B. Nordell. Large-scale thermal energy storages. Conference paper, Winter Cities 2000: Energy and Env. (2000) [Google Scholar]
  26. https://www.businessfinland.fi/en/whats-new/news/2019/qheat-is-piloting-worlds-first-seasonal-geothermal-energy-storage/ [Google Scholar]
  27. T. Baser, J.S. McCartney. Renew. Energy, 147, pp. 2582-2598 (2020) [Google Scholar]
  28. K. Kubiński, L. Szabłowski. Renew. Energy, Elsevier, 145 (C), pp. 2025-2033 (2020) [CrossRef] [Google Scholar]
  29. R. Lazzarin, M. Noro. Energy and Build., 174, pp. 335-346, (2018) [CrossRef] [Google Scholar]
  30. M. Honkonen. Thermal energy storage concepts and their feasibility, Master thesis, Aalto University, Rock mechanics (2016) [Google Scholar]
  31. I. Kukkonen, S. Peltoniemi. Physics and Chemistry of the Earth, 23, no. 3, pp. 341-349 (1998) [CrossRef] [Google Scholar]
  32. GTK Geologian Tutkimuskeskus, Pohjaveden synty ja esiintyminen (In Finnish). Available: http://weppi.gtk.fi/aineistot/mp-opas/pohjav_esiintyminen.htm (2005) [Google Scholar]
  33. T. Schmidt, D. Mangold, H. Müller-Steinhagen, Seasonal thermal energy storage in Germany, ISES Solar World Congress, (2003) [Google Scholar]
  34. G. K. Pavlov, B. W. Olesen. Seasonal solar thermal energy storage through ground heat exchangers –Review of systems and applications, In Proceedings (2011) [Google Scholar]
  35. S. Maanpää. Geological surveys, available in Finnish. Interview (2020) [Google Scholar]
  36. R. Karhunen. Iniön ja Turun kartta-alueiden kallioperä. Suomen geologinen kartta 1: 100000.Kallioperäkarttojen selitykset, lehdet 1041 ja 1043 [Pre-Quaternary rocks of the Iniö and Turku map-sheet areas. Explanation to the maps of Pre-Quaternary rocks, Sheets 1041 and 1043] (2004) [Google Scholar]
  37. P. Lahermo, M. Ilmasti, R. Juntunen, M. Taka. The hydrogeochemical mapping of Finnish aquifers. Geochemical Atlas of Finland, part 1. (1990) [Google Scholar]
  38. J.P. Lunkka, P. Johansson, M. Saarnisto, O. Sallasmaa. Quaternary glaciations – Extend and Chronology, Elsevier, 2 (1), pp. 93-100 (2004) [CrossRef] [Google Scholar]
  39. J. Niemelä, C-G. Sten, M. Taka, B. Winterhalter. Turun-Salon seudun maaperä. Suomen geologinen kartta 1:100 000. Maaperäkarttojen selitykset, lehdet 1043 ja 2021 [Quaternary deposits in the Turku-Salo map-sheet areas. Geological map of Finland 1:100 000. Explanation of the maps of Quaternary deposits, sheets 1043 and 2021] (1987) [Google Scholar]
  40. J. Lehtonen. Underpinning project; owners´ views on technology, economy and project management, Doctoral dissertation, Aalto University (2011) [Google Scholar]
  41. https://www.renor.fi/uutiset/2018/ainutlaatuinen-pohjavesihanke-askonalueella.html [Google Scholar]
  42. J. M. Bloemendal. TU Delft. E-mail (2019) [Google Scholar]
  43. S. Gehlin. The Swedish Geoenergy Center. E-mail (2019) [Google Scholar]
  44. R. Lautkankare, J. Rantala, V. Sarola, H. Kanerva-Lehto. Hybrid energy micropiles in underpinning projects – combination of load bearing structures and geothermal energy field. ISM 2014, Poland (2014) [Google Scholar]
  45. Ministry of economic affairs and employment of Finland. https://tem.fi/artikkeli/-/asset_publisher/kolmelle-uusiutuvan-energian-suurelle-demolaitoshankkeelle-yhteensa-13-4-miljoonaa-euroa-investointitukea [Google Scholar]
  46. https://torilive.fi/ [Google Scholar]
  47. https://www.youtube.com/watch?v=EtJ9sFUG1kg [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.