Open Access
Issue
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
Article Number 17002
Number of page(s) 7
Section Moisture measurements
DOI https://doi.org/10.1051/e3sconf/202017217002
Published online 30 June 2020
  1. Kaya, O.Aydın, I. Dincer, Numerical modeling of heat and mass transfer during forced convection drying of rectangular moist objects. International Journal of Heat and Mass Transfer, Vol.49(17–18), pp.3094-3103, 2006. [Google Scholar]
  2. C. Dietl, E.R.F. Winter, R. Viskanta. An efficient simulation of the heat and mass transfer process during drying of capillary porous, hygroscopic materials, Int. J. Heat Mass Transfer, Vol. 41, pp. 3611-3625, 1998. [CrossRef] [Google Scholar]
  3. M.B. Janettia, L. P.M. Colombo, F. Ochs, W. Feist. Effect of evaporation cooling on drying capillary active building materials. Energy and Buildings, Vol. 166, pp. 550-560, 2018. [Google Scholar]
  4. G. A. Scheffler, R. Plagge. Introduction of a DryingCoefficient for Building Materials. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE. Buildings XI – Thermal Performance of the Exterior Envelopes of Whole Buildings: Proceedings, Paper 23, Atlanta, USA (2010) [Google Scholar]
  5. Krus, M., Lenz, K., Plagge, R., Scheffler, G.: Ein Trocknungskoeffizient als neuer hygrothermischer Standardmaterialkennwert. 12. Symposium on Building Physics, Dresden University of Technology, Proceedings Vol. 1: 283-293, Dresden 2007. [Google Scholar]
  6. N. Karagiannis, M. Karoglou, A. Bakolas, M. Krokida, A. Moropoulou. Drying kinetics of building materials capillary moisture, Construction and Building Materials, Vol.137, 441–449, 2017. [Google Scholar]
  7. EN 16322, Conservation of Cultural Heritage – Test Methods – Determination of Drying Properties, 2013. [Google Scholar]
  8. Nicolai A (2007) Modeling and numerical simulation of salt transport and phase transition in unsaturated porous building materials. Phd, Syracuse University [Google Scholar]
  9. Derdour L, Desmorieux H, Andrieu J (2000) A contribution to the characteristic drying curve concept: Application to the drying of plaster. Drying Technol 18(1): 237–260 [CrossRef] [Google Scholar]
  10. Sander. A, Kardum, J.P., Skansi, D. Transport properties in drying solids, Poster session on drying, 14th international congress of chemical and process engineering, Prage, August 2000. [Google Scholar]
  11. M. Van Belleghem, M. Steeman, A. Janssens, M. De Paepea, Drying behaviour of calcium silicate, Construction and Building Materials, Vol. 65, pp.507-517, 2014. [Google Scholar]
  12. Jurk.k, Scheffer, G. Grunewald, J. Plagge. Durchführung und Analyse von Trockungsexperimenten von Baustoffen-Methoden, Funktionen und Parameter, Beitrag zum Feuchtetag, 2004. [Google Scholar]
  13. E. Barreira, J.M.P.Q. Delgado, V.P. de Freitas, Wetting and Drying Kinetics of Building Materials, Drying and Wetting of Building Materials and Components, Springel, 2014. [Google Scholar]
  14. K. Murugesan, K.N. Seetharamu, P.A.A. Narayana, A one dimensionalanalysis of convective drying of porous materials, Heat MassTransfer 32 (1996) 81–88. [Google Scholar]
  15. K.A. Landman. L.Pel and E.F. Kaasschieter, Analytic modelling of drying of porous materials. Mathematical engineering in industry, vol.8 (2), pp. 89-122, 2001. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.