Open Access
Issue
E3S Web Conf.
Volume 172, 2020
12th Nordic Symposium on Building Physics (NSB 2020)
Article Number 22003
Number of page(s) 9
Section Energy performance assessment based on in situ measurements incl. IEA Annex 71
DOI https://doi.org/10.1051/e3sconf/202017222003
Published online 30 June 2020
  1. R. Judkoff and J. Neymark, “Model Validation and Testing: The Methodological Foundation of ASHRAE Standard 140.,” in ASHRAE Conf. Quebec City, Canada (2006). [Google Scholar]
  2. P. Strachan, G. Kokogiannakis, and I. Macdonald., “History and Development of Validation with the ESP-r Simulation Program,” Building and Environment, p. 601–609 (2008). [Google Scholar]
  3. KU Leuven, 17 04 2015: http://www.kuleuven.be/bwf/projects/annex58. [Google Scholar]
  4. P. Strachan, K. Svehla, I. Heusler and M. Kersken, “Whole model empirical validation on a full-scale building” Journal of Building Performance Simulation 9, p.331-350 DOI: 10.1080/19401493.2015.1064480, (2015). [Google Scholar]
  5. P. Strachan, K. Svehla, M. Kersken and I. Heusler, “Reliable building energy performance characterisation based on full scale dynamic measurements - Report of Subtask 4a: Empirical validation of common building energy simulation models based on in situ dynamic data,” Leuven (2016). [Google Scholar]
  6. “Annex 58 - BES-Model Validation DATA”: doi: 10.15129/8a86bbbb-7be8-4a87-be76-0372985ea228, https://pure.strath.ac.uk/portal/en/datasets/twinhouses-empirical-dataset-experiment-1%288a86bbbb-7be8-4a87-be76-0372985ea228%29.html. [Google Scholar]
  7. “Annex 58 - BES-Model Validation DATAset 2”: doi: 10.15129/94559779-e781-4318-8842-80a2b1201668, https://pure.strath.ac.uk/portal/en/datasets/twinhouses-empirical-validation-dataset-experiment-2(94559779-e781-4318-8842-80a2b1201668).html. [Google Scholar]
  8. G. Flett and N. Kelly, “An occupant-differentiated, higher-order Markov Chain method forprediction of domestic occupancy,” Energy and Buildings 230, pp. 219-230 (2016). [Google Scholar]
  9. G. Flett and N. Kelly, “Energy and Buildings,” A disaggregated, probabilistic, high resolution method for assessment of domestic occupancy and electrical demand, no. 140, pp. 171-187, 2017. [CrossRef] [Google Scholar]
  10. P. Strachan, J. Hand, K. Svehla, I. Heusler and M. Kersken, “A Full-Scale Empirical Validation Study Applied to Thermal Simulation Programs,” in Proc. BS2015: Hyderabad, India (2015). [Google Scholar]
  11. KU Leuven, “Annex 71: Building Energy Performance Assessment Based on Optimized insitu Measurements”: https://bwk.kuleuven.be/bwf/projects/annex71/. [04 11 2019]. [Google Scholar]
  12. K. Lomas, H. Eppel, C. Martin and D. Bloomfield, “IEA Annex 21/Task 12, Final Report: Empirical Validation of Thermal Building Simulation Programs using Test Room Data,” 1994. [Google Scholar]
  13. P. Loutzenhiser, H. Manz, C. Felsmann, P. Strachan and G. Maxwell, “An Empirical Validation of Modeling Solar Gain through a Glazing Unit with External and Internal Shading Screens,” Applied Thermal Engineering 27, p. 528-538 (2007). [Google Scholar]
  14. O. Kalyanova, P. Heiselberg, C. Felsmann, H. Poirazis, P. Strachan and A. Wijsman, “An Empirical Validation of Building Simulation Software for Modelling of Double Skin Façades,” in Proc. 11th IBPSA Conf., Glasgow (2009). [Google Scholar]
  15. DIN V 18599 (E):06-2016: Energy efficiency of buildings — Calculation of the net, final and primary energy demand for heating, cooling, ventilation, domestic hot water and lighting. [Google Scholar]
  16. D. Johnston, D. Miles-Shanton, J. Wingfield, D. Farmer and M. Bell, Whole House Heat Loss Test Method (Coheating), Leeds Metropolitan University - Centre for the Built Environment (2012). [Google Scholar]
  17. W. Swan, R. Fitton and P. Brown, “A UK practitioner view of domestic energy performance measurement”; doi: 10.1680/ensu.14.00056 Proc. of the Institution of Civil Engineers - Engineering Sustainability; 168(3),pp. 140-147 (2015). [Google Scholar]
  18. G. Bauens and S. Roels, “Co-heating test: A state of the art,” Energy and building 82, pp. 163-172 (2014). [CrossRef] [Google Scholar]
  19. G. Flett, “Modelling and Analysis of Energy Demand Variation and Uncertainty in Small-Scale Domestic Energy Systems,” PhD Thesis, University of Strathclyde, Glasgow (2017). [Google Scholar]
  20. EnergyPlus (n. d.) EnergyPlus. https://energyplus.net/ (28 May 2018). [Google Scholar]
  21. E. Mantesi, K. Mourkos, C. Hopfe, R. McLeod, P. Vatougiou, M. Kersken and P. Strachan, “Deploying Building Simulation to Enhance the 1 Experimental Design of a Full-scale Empirical Validation Project,” in Proceedings BuildingSimulation2019, Rome, Italy (2019). [Google Scholar]
  22. “WUFI(R) Plus,” 11 Dec 2019, https://wufi.de/en/software/wufi-plus/. [Google Scholar]
  23. M. Morris, “Factorial Sampling Plans for Preliminary Computational Experiments,” Tecnometrics; 33(2),pp. 161-174 (1991). [CrossRef] [Google Scholar]
  24. F. Campolongo, J. Carboni and A. Saltelli, “An effective screening design for sensitivity analysis of large models”; doi: 10.1016/j.envsoft.2006.10.004, Environmental Modelling and Software, 22(10),pp. 1509-1518 (2007). [CrossRef] [Google Scholar]
  25. Giglioli N., Saltelli A. „Simlab 2.2. Reference Manual”, Ispra, Italy: Institute for Systems Informatics and Safety, (2008). [Google Scholar]
  26. M. Hopfe and J. Hansen, “Uncertainty analysis in building performance simulation for design support”; doi: 10.1016/j.enbuild.2011.06.034, Energy & Building; 43(10),pp. 2798-2805 (2011). [CrossRef] [Google Scholar]
  27. R. McLoeod, C. Hopfe and A. Kwan, “An investigation into future performance and overheating risks in Passivhaus dwellings”, doi: 10.1016/j.buildenv.2013.08.024, Building & Environment 70, p. 189–209. [CrossRef] [Google Scholar]
  28. SALib (n. d.) SALib - Sensitivity Analysis Library in Python,” https://salib.readthedocs.io/en/latest/ (19 Jan 2019) [Google Scholar]
  29. “JEPlus (n. d.) jEPlus User’s Manual, Version 1.4. http://www.jeplus.org/wiki/doku.php?id=docs:manual_1_4. (12 March 2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.