Open Access
E3S Web Conf.
Volume 178, 2020
High Speed Turbomachines and Electrical Drives Conference 2020 (HSTED-2020)
Article Number 01068
Number of page(s) 4
Published online 09 July 2020
  1. A. Arif, Z. Wang, Service restoration in resilient power distribution systems with networked microgrid, Proceedings of the 2016 IEEE Power and Energy Society General Meeting (PESGM), 1–5. DOI: 10.1109/PESGM.2016.7741533 (2016) [Google Scholar]
  2. J.A. Momoh, Smart grid design for efficient and flexible power networks operation and control, Power Systems Conference and Exposition, PSCE ’09, 1–8. DOI: 10.1109/PSCE.2009.4840074 (2009) [Google Scholar]
  3. A. Ipakchi, F. Albuyeh, Grid of the future, IEEE Power and Energy Magazine 7, 52–62. DOI: 10.1109/MPE.2008.931384 (2009) [CrossRef] [Google Scholar]
  4. Y. Yang, W. Li, T.A. Gulliver, S. Li, Bayesian Deep Learning-Based Probabilistic Load Forecasting in Smart Grids, IEEE Transactions on Industrial Informatics 16, 7, 4703–4713. DOI: 10.1109/TII.2019.2942353 [Google Scholar]
  5. V. Suresh, P. Janik, J. Rezmer, Z. Leonowicz, Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm, Energies 13, 3, 723, DOI: 10.3390/en13030723 [Google Scholar]
  6. M. Beccali, L. Bellia, F. Fragliasso, M. Bonomolo, G. Zizzo, G. Spada, Assessing the lighting systems flexibility for reducing and managing the power peaks in smart grids, Applied Energy 268, 114924. DOI: 10.1109/TSG.2019.2942850 [Google Scholar]
  7. M. Jalali, V. Kekatos, N. Gatsis, D. Deka, Designing Reactive Power Control Rules for Smart Inverters Using Support Vector Machines, IEEE Transactions of Smart Grid 11, 2, 1759–1770. DOI: 10.1109/TSG.2019.2942850 [Google Scholar]
  8. D.L. Donaldson, D. Jayaweera, Effective solar prosumer identification using net smart meter data, International Journal of Electrical Power & Energy Systems 118, 105823. DOI: 10.1016/j.ijepes.2020.105823 [CrossRef] [Google Scholar]
  9. Y. Chawla, A. Kowalska-Pyzalska, P.D. Silveira, Marketing and communications channels for diffusion of electricity smart meters in Portugal, Telematics and Informatics 50, 101385. DOI:10.1016/j.tele.2020.101385 [CrossRef] [Google Scholar]
  10. M. Jasiński, et al., Influence of Measurement Aggregation Algorithms on Power Quality Assessment and Correlation Analysis in Electrical Power Network with PV Power Plant, Energies 12, 18, 3547. DOI: 10.3390/en12183547 [Google Scholar]
  11. W. Grycan, B. Brusilowicz, M. Kupaj, Photovoltaic farm impact on parameters of power quality and the current legislation, Solar Energy 165. DOI: 10.1016/j.solener.2018.03.016 [Google Scholar]
  12. A.W. Altaher, A.H. Hussein, Intelligent security system detects the hidden objects in the smart grid, Indones. J. Electr. Eng. Comput. Sci. 19, 1, 188. DOI: 10.11591/ijeecs.v19.i1 [Google Scholar]
  13. F. Wei, Z. Wan, H. He, Cyber-Attack Recovery Strategy for Smart Grid Based on Deep Reinforcement Learning, IEEE Transactions of Smart Grid 11, 3, 2476–2486. DOI: 10.1109/TSG.2019.2956161 [Google Scholar]
  14. T. Sikorski, et al., A Case Study on Distributed Energy Resources and Energy-Storage Systems in a Virtual Power Plant Concept: Economic Aspects, Energies 12, 23, 4447. DOI: 10.3390/en12234447 [Google Scholar]
  15. H. Li, Z. Wang, G. Chen, Z.Y. Dong, Distributed Robust Algorithm for Economic Dispatch in Smart Grids Over General Unbalanced Directed Networks, IEEE Transaction of Industrial Informatics 16, 7, 4322–4332. DOI: 10.1109/TII.2019.2945601 [Google Scholar]
  16. C. Vournas, C. Lambrou, M. Glavic, T. Van Cutsem, An integrated autonomous protection system against voltage instability based on Load Tap Changers, In 2010 IREP Symposium Bulk Power System Dynamics and Control – VIII (IREP), 1–14. DOI: 10.1109/IREP.2010.5563286 (2010) [Google Scholar]
  17. C. Vournas, M. Karystianos, Load tap changers in emergency and preventive voltage stability control, IEEE Transactions on Power Systems 19, 1, 492–498. DOI: 10.1109/TPWRS.2003.818728 (2004) [CrossRef] [Google Scholar]
  18. I.O. Golikov, A.V. Vinogradov, Adaptivnoe avtomaticheskoe regulirovanie napryazheniya v sel’skih elektricheskih setyah 0, 38 kV [Adaptive automatic voltage regulation in rural electric networks 0.38 kV] (Publishing House of Orel State Agrarian University, Oryol, Russia, 2016) [Google Scholar]
  19. A. Vinogradov, A. Vinogradova, I.O. Golikov, V. Bolshev, Adaptive Automatic Voltage Regulation in Rural 0.38 kV Electrical Networks, International Journal of Emerging Electric Power Systems 20, 3. DOI: 10.1515/ijeeps-2018-0269 (2019) [CrossRef] [Google Scholar]
  20. E. Gracheva, A. Alimova, Calculation Methods and Comparative Analysis of Losses of Active and Electric Energy in Low Voltage Devices, In 2019 International Ural Conference on Electrical Power Engineering (UralCon), 361–367. DOI: 10.1109/URALCON.2019.8877627 (2019) [CrossRef] [Google Scholar]
  21. M. Kuzlu, M. Pipattanasomporn, S. Rahman, Communication network requirements for major smart grid applications in HAN, NAN and WAN, Computer Networks 67, 74–88. DOI: 10.1016/j.comnet.2014.03.029 (2014) [CrossRef] [Google Scholar]
  22. E. Ancillotti, R. Bruno, M. Conti, The role of communication systems in smart grids: architectures, technical solutions and research challenges, Communication Technologies 36, 1665–1697. DOI: 10.1016/j.comcom.2013.09.004 (2013) [Google Scholar]
  23. A. Vinogradov, V. Bolshev, A. Vinogradova, T. Kudinova, M. Borodin, A. Selesneva, N. Sorokin, A System for Monitoring the Number and Duration of Power Outages and Power Quality in 0.38 kV Electrical Networks, In P. Vasant, I. Zelinka, G.W. Weber, (eds) Intelligent Computing & Optimization, ICO 2018, Advances in Intelligent Systems and Computing 866, 1–10. DOI: 10.1007/978-3-030-00979-3_1 (2019) [Google Scholar]
  24. Y. Kabalci, A survey on smart metering and smart grid communication, Renewable and Sustainable Energy Reviews 57, 302–318. DOI: 10.1016/j.rser.2015.12.114 (2016) [CrossRef] [Google Scholar]
  25. R.R. Mohassel, A. Fung, F. Mohammadi, K. Raahemifar, A survey on Advanced Metering Infrastructure, Electrical Power and Energy Systems 63, 473–484. DOI: 10.1016/j.ijepes.2014.06.025 (2014) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.