Open Access
E3S Web Conf.
Volume 181, 2020
2020 5th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2020)
Article Number 02001
Number of page(s) 5
Section Solar Energy Development and Utilization
Published online 24 July 2020
  1. Meteotest (2003) METEONORM Global Meteorological Database for Engineers, Planners and Education. [Google Scholar]
  2. Mamlook, R., Akash, B. A., & Nijmeh, S. (2001). Fuzzy sets programming to perform evaluation of solar systems in Jordan. Energy Conversion and Management, 42(14),1717–1726. [Google Scholar]
  3. Akash, B. A., Mamlook, R., & Mohsen, M. S. (1999). Multi-criteria selection of electric power plants using analytical hierarchy process. Electric Power Systems Research, 52(1),29–35. [CrossRef] [Google Scholar]
  4. Odeh, S., Nijmeh, S., & Akash, B. (2004). Performance evaluation of solar-assisted double- tube evaporator heat pump system. International communications in heat and mass transfer, 31(2),191–201. [CrossRef] [Google Scholar]
  5. Alata, M., Al-Nimr, M. A., & Qaroush, Y. (2005). Developing a multipurpose sun tracking system using fuzzy control. Energy Conversion and Management, 46(7-8), 1229–1245. [Google Scholar]
  6. Jaber, J. O., Elkarmi, F., Alasis, E., & Kostas, A. (2015). Employment of renewable energy in Jordan: Current status, SWOT and problem analysis. Renewable and Sustainable Energy Reviews, 49, 490–499. [CrossRef] [Google Scholar]
  7. Akash, O. B., Abdo, A. M. A., Mohsen, M. S., & Akash, B. A. (2016). A Note on Solar Energy Research in Jordan. International Journal of Applied Engineering Research, 11(10),7100–7105. [Google Scholar]
  8. Moh’d A, A. N., Bukhari, M., & Mansour, M. (2017). A combined CPV/T and ORC solar power generation system integrated with geothermal cooling and electrolyser/fuel cell storage unit. Energy, 133, 513–524. [CrossRef] [Google Scholar]
  9. Almuhtady, A., Alshwawra, A., Alfaouri, M., Al- Kouz, W., & Al-Hinti, I. (2019). Investigation of the trends of electricity demands in Jordan and its susceptibility to the ambient air temperature towards sustainable electricity generation. Energy, Sustainability and Society, 9(1),1–18. [Google Scholar]
  10. Nader, N., W. Al-Kouz, S. Al-Dahidi. (2019). Assessment of Existing Photovoltaic System with Khobar City. Processes, 8(1),9. doi: [Google Scholar]
  11. Al-Kouz, W., S. Al-Dahidi, B. Hammad, M. Al- Abed. (2019). Modeling and Analysis Framework for Investigating the Impact of Dust and Temperature on PV Systems’ Performance and Optimum Cleaning Frequency. Applied Sciences, 9(7), 1397. doi: 10.3390/app9071397 [CrossRef] [Google Scholar]
  12. Al-Bashir, A., M. Al-Dweri, A. Al-Ghandoor, B. Hammad, W. Al-Kouz. (2020). Analysis of Effects of Solar Irradiance, Cell Temperature and Wind Speed On Photovoltaic Systems Performance. International Journal of Energy Economics and Policy, 10(1),353–359. doi:10.32479/ijeep.859 [CrossRef] [Google Scholar]
  13. National Renewable Energy Laboratory, (2019), System Advisor Model (SAM) – NREL, [Google Scholar]
  14. Wagner, M., (2014), Modeling Parabolic Trough Systems, Jun 2014. [Google Scholar]
  15. Blair et al., (2018), System Advisor Model (SAM) General Description (Version 2017.9.5), NREL/TP-6A20-70414. [Google Scholar]
  16. Lopes, F.; Ricardo Conceição, R.; Silva, H.; Fasquelle, T.; Salgado, R.; Canhoto, P.; Collares-Pereira, M., (2019), Short-Term Forecasts of DNI from an Integrated Forecasting System (ECMWF) for Optimized Operational Strategies of a Central Receiver System Energies., Vol. 12 No. 7– p 1368. [Google Scholar]
  17. Kesseli, D.; Wagner, M.; Guédez, R.; Turchi, C., (2018). CSP-Plant Modeling Guidelines and Compliance of the System Advisor Model (SAM). DRAFT SolarPACES Conference Paper. [Google Scholar]
  18. Wagner, M. J.; Gilman, P., (2011). Technical Manual for the SAM Physical Trough Model. 124 pp.; NREL Report No.TP-5500-51825. [Google Scholar]
  19. Turchi, C.; Neises, T., (2015). Parabolic Trough Solar-Thermal Output Model Decoupled from SAM Power Block Assumptions. Milestone report prepared for the U.S. Department of Energy. support/DOE%20Milestone%20Report%20-%20Stand alone%20Parabolic%20Trough%20code%202015-03-30.pdf [Google Scholar]
  20. Boretti, A., (2018), Concentrated Solar Power Plants Capacity Factors: A Review, Nonlinear Approaches, in Engineering Applications Energy: Vibrations, and Modern Applications, Liming Dai, Eds., Reza N. Jazar, Springer, New York. dx.10.1007/978-3-319-69480-1_2 [Google Scholar]
  21. Boretti, A., S. Castelletto, and S. Al-Zubaidy, (2018), Concentrating solar power tower technology: present status and outlook, Nonlinear Engineering – Modeling and Application (NLENG). Volume 8, Issue 1. Published Online: 2018- 05-22.Ahead of print. [Google Scholar]
  22. Boretti, A., (2018), Cost and Production of Solar Thermal and Solar Photovoltaics Power Plants in the United States, Renewable Energy Focus. Volume 26, September 2018, Pages 93–99. [Google Scholar]
  23. Boretti, A. and Al-Zubaidy, S., (2019), A case study on combined cycle power plant integrated with solar energy in Trinidad and Tobago, Sustainable Energy Technologies and Assessments, vol. 32, pp. 100–110. [CrossRef] [Google Scholar]
  24. Boretti, A., (2019), Realistic expectation of electricity production from current design concentrated solar power solar tower with thermal energy storage, Energy Storage, Volume1, Issue3, June 2019, e57. [Google Scholar]
  25. Boretti, A., J. Nayfeh and W. Al-Kouz, (2020), Validation of SA modeling of concentrated solar power plants, Energies, 13 (8), doi:10.3390/en13081949 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.