Open Access
Issue
E3S Web Conf.
Volume 181, 2020
2020 5th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2020)
Article Number 02002
Number of page(s) 7
Section Solar Energy Development and Utilization
DOI https://doi.org/10.1051/e3sconf/202018102002
Published online 24 July 2020
  1. UPME, Integración de las energías renovables no convencionales en Colombia Integración de las energías en Colombia. 2015. [Google Scholar]
  2. IRENA, “Renewable energy sources,” 2018. [Online]. Available: https://https://www.irena.org/. [Accessed: 01-May-2019]. [Google Scholar]
  3. B. Bhandari, S. R. Poudel, K.-T. Lee, and S.-H. Ahn, “Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation,” Int. J. Precis. Eng. Manuf. - Green Technol., vol. 1, no. 2, pp. 157–173, 2014, doi: 10.1007/s40684-014-0021-4. [CrossRef] [Google Scholar]
  4. “WEC Energy Trilemma Index Tool,” 2018. [Online]. Available: https://https://trilemma.worldenergy.org/#!/energy-index. [Accessed: 09-Apr-2019]. [Google Scholar]
  5. A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm,” Comput. Struct., vol. 169, pp. 1–12, 2016, doi: 10.1016/j.compstruc.2016.03.001. [Google Scholar]
  6. S. Twaha and M. A.. Ramli, “A review of optimization approaches for hybrid distributed energy generation systems: Off-grid and grid- connected systems,” Sustain. Cities Soc., vol. 41, pp. 1–19, 2018. [Google Scholar]
  7. S. R. Tito, T. T. Lie, and T. N. Anderson, “Optimal sizing of a wind-photovoltaic-battery hybrid renewable energy system considering socio- demographic factors,” Sol. Energy, vol. 136, pp. 525–532, 2016, doi: 10.1016/j.solener.2016.07.036. [Google Scholar]
  8. V. Khare, S. Nema, and P. Baredar, “Solar-wind hybrid renewable energy system: A review,” Renew. Sustain. Energy Rev., vol. 58, pp. 23–33, 2016, doi: 10.1016/j.rser.2015.12.223. [CrossRef] [Google Scholar]
  9. T. Khatib, A. Mohamed, and K. Sopian, “Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: Case study of Kuala Terengganu, Malaysia,” Energy Build., vol. 47, pp. 321–331, 2012, doi: 10.1016/j.enbuild.2011.12.006. [Google Scholar]
  10. G. Merei, C. Berger, and D. U. Sauer, “Optimization of an off-grid hybrid PV-Wind- Diesel system with different battery technologies using genetic algorithm,” Sol. Energy, vol. 97, pp. 460–473, 2013, doi: 10.1016/j.solener.2013.08.016. [Google Scholar]
  11. A. Kamjoo, A. Maheri, A. M. Dizqah, and G. A. Putrus, “Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming,” Int. J. Electr. Power Energy Syst., vol. 74, pp. 187–194, 2016, doi: 10.1016/j.ijepes.2015.07.007. [CrossRef] [Google Scholar]
  12. M. B. T. Fogaing, H. Gordon, C. F. Lange, D. H. Wood, and B. A. Fleck, Concentrated Photovoltaic (CPV): From Deserts to Rooftops, vol. 70. Springer International Publishing, 2019. [Google Scholar]
  13. Q. Xuan et al., “Overall detail comparison for a building integrated concentrating photovoltaic/daylighting system,” Energy Build., vol. 199, pp. 415–426, 2019, doi: 10.1016/j.enbuild.2019.07.018. [Google Scholar]
  14. H. Hadavinia and H. Singh, “Modelling and experimental analysis of low concentrating solar panels for use in building integrated and applied photovoltaic (BIPV/BAPV) systems,” Renew. Energy, vol. 139, pp. 815–829, 2019, doi: 10.1016/j.renene.2019.02.121. [Google Scholar]
  15. A. Mourant, “BIPV: Better form, improved function,” Renew. Energy Focus, vol. 15, no. 5, pp. 20–23, 2014, doi: https://doi.org/10.1016/S1755-0084(14)70115-2. [Google Scholar]
  16. A. Arias–Rosales and R. Mej\’\ia–Gutiérrez, “Modelling and simulation of direct solar radiation for cost-effectiveness analysis of V-Trough photovoltaic devices,” Int. J. Interact. Des. Manuf., vol. 10, no. 3, pp. 257–273, 2016. [Google Scholar]
  17. R. Leutz and H. P. Annen, “Reverse ray-tracing model for the performance evaluation of stationary solar concentrators,” Sol. energy, vol. 81, no. 6, pp. 761–767, 2007. [Google Scholar]
  18. J. E. Cotter, “RaySim 6.0: a free geometrical ray tracing program for silicon solar cells,” in Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005., 2005, pp. 1165–1168. [Google Scholar]
  19. T. Woolmington, K. Sunderland, J. Blackledge, and M. Conlon, “The progressive development of turbulence statistics and its impact on wind power predictability,” Energy, vol. 77, pp. 25–34, 2014, doi: 10.1016/j.energy.2014.03.015. [CrossRef] [Google Scholar]
  20. Small Wind Certification Council, “Bergey Excel 6 SWCC Summary Report,” 2014. [Google Scholar]
  21. Small Wind Certification Council, “Kestrel e400nb SWCC Summary Report,” 2015. [Google Scholar]
  22. Small Wind Certification Council, “Kingspan KW6 SWCC Summary Report,” 2014. [Google Scholar]
  23. Small Wind Certification Council, “Endurance S-343 SWCC Summary Report,” 2014. [Google Scholar]
  24. A. Orrell, N. Foster, S. Morris, and J. Homer, “2016 distributed wind market report,” 2017. [Google Scholar]
  25. A. Maleki and F. Pourfayaz, “Optimal sizing of autonomous hybrid photovoltaic/wind/battery power system with LPSP technology by using evolutionary algorithms,” Sol. Energy, vol. 115, pp. 471–483, 2015, doi: 10.1016/j.solener.2015.03.004. [Google Scholar]
  26. A. Malheiro, P. M. Castro, R. M. Lima, and A. Estanqueiro, “Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems,” Renew. Energy, vol. 83, pp. 646–657, 2015, doi: 10.1016/j.renene.2015.04.066. [Google Scholar]
  27. Alcaldia de Medellín and Área Metropolitana del Valle de Aburra, “SIATA, Radar Meteorologico.” 2018. [Google Scholar]
  28. IPSE, “Instituto de Planeación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas.” 2019. [Google Scholar]
  29. R. Fu, D. Feldman, and R. Margolis, “U.S. Solar Photovoltaic System Cost Benchmark: Q1 2018,” Nrel, no. Novmnber, pp. 1–47, 2018, doi: 10.7799/1325002. [Google Scholar]
  30. Fraunhofer, “Fraunhofer ISE: Photovoltaics Report,” Fraunhofer ISE, no. March, p. 47, 2019. [Google Scholar]
  31. C. S. Sangani and C. S. Solanki, “Experimental evaluation of V-trough (2 suns) PV concentrator system using commercial PV modules,” Sol. energy Mater. Sol. cells, vol. 91, no. 6, pp. 453–459, 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.