Open Access
Issue
E3S Web Conf.
Volume 181, 2020
2020 5th International Conference on Sustainable and Renewable Energy Engineering (ICSREE 2020)
Article Number 02003
Number of page(s) 7
Section Solar Energy Development and Utilization
DOI https://doi.org/10.1051/e3sconf/202018102003
Published online 24 July 2020
  1. Khatib T., Ibrahim I. A., Mohamed A. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system. Energy Convers. Manag., 2016; vol. 120, pp. 430–448. [Google Scholar]
  2. Hernández-Callejo L., Gallardo-Saavedra S., Alonso- Gómez V. A review of photovoltaic systems: Design, operation and maintenance. Sol. Energy, 2019; vol. 188, pp. 426–440. [Google Scholar]
  3. Talavera D. L., Muñoz-Rodriguez F. J., Jimenez- Castillo G., Rus-Casas C. A new approach to sizing the photovoltaic generator in self-consumption systems based on cost–competitiveness, maximizing direct self-consumption. Renew. Energy, 2019; vol. 130, pp. 1021–1035. [Google Scholar]
  4. Ghaib K., Ben-Fares F. Z. A design methodology of stand-alone photovoltaic power systems for rural electrification. Energy Convers. Manag.; 2017; vol. 148, pp. 1127–1141. [Google Scholar]
  5. Tsianikas S., Zhou J., Birnie D. P., Coit D. W. Economic trends and comparisons for optimizing grid-outage resilient photovoltaic and battery systems. Appl. Energy, 2019; vol. 256, p. 113892. [Google Scholar]
  6. Xu G., Shang C., Fan S., Zhang X., Cheng H. Sizing battery energy storage systems for industrial customers with photovoltaic power. Energy Procedia, 2019; vol. 158, pp. 4953–4958. [Google Scholar]
  7. Zhang J., Cho H., Luck R., Mago P. J. Integrated photovoltaic and battery energy storage (PV-BES) systems: An analysis of existing financial incentive policies in the US. Appl. Energy, 2018; vol. 212, pp. 895–908. [Google Scholar]
  8. Benavente F., Lundblad A., Campana P. E., Zhang Y., Cabrera S., Lindbergh G. Photovoltaic/battery system sizing for rural electrification in Bolivia: Considering the suppressed demand effect. Appl. Energy, 2019; vol. 235, pp. 519–528. [Google Scholar]
  9. Ayop R., Isa N. M., Tan C. W. Components sizing of photovoltaic stand-alone system based on loss of power supply probability. Renew. Sustain. Energy Rev., 2018; vol. 81, pp. 2731–2743. [CrossRef] [Google Scholar]
  10. Roberts M. B., Bruce A., MacGill I. Impact of shared battery energy storage systems on photovoltaic self- consumption and electricity bills in apartment buildings. Appl. Energy, 2019; vol. 245, pp. 78–95. [Google Scholar]
  11. Li J. Optimal sizing of grid-connected photovoltaic battery systems for residential houses in Australia. Renew. Energy, 2019; vol. 136, pp. 1245–1254. [Google Scholar]
  12. Koutroulis E., Kolokotsa D., Potirakis A., Kalaitzakis K. Methodology for optimal sizing of stand-alone photovoltaic/wind-generator systems using genetic algorithms. Sol. Energy, 2006; vol. 80, no. 9, pp. 1072–1088. [Google Scholar]
  13. Khan F. A., Pal N., Saeed S. H. Review of solar photovoltaic and wind hybrid energy systems for sizing strategies optimization techniques and cost analysis methodologies. Renew. Sustain. Energy Rev., 2018; vol. 92, pp. 937–947. [Google Scholar]
  14. Behravesh V., Foroud A. A., Keypour R. Optimal sizing methodology for photovoltaic and wind hybrid rooftop generation systems in residential low voltage distribution networks. Sol. Energy, 2018; vol. 173, pp. 17–33. [Google Scholar]
  15. Khiareddine A., Ben Salah C., Rekioua D., Mimouni M. F. Sizing methodology for hybrid photovoltaic/wind/hydrogen/battery integrated to energy management strategy for pumping system. Energy, 2018; vol. 153, pp. 743–762. [CrossRef] [Google Scholar]
  16. Coppitters D., De Paepe W., Contino F. Surrogate- assisted robust design optimization and global sensitivity analysis of a directly coupled photovoltaic-electrolyzer system under techno- economic uncertainty. Appl. Energy, 2019; vol. 248, pp. 310–320. [Google Scholar]
  17. Rawat R., Kaushik S. C., Lamba R. A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system. Renew. Sustain. Energy Rev., 2016; vol. 57, pp. 1506–1519. [CrossRef] [Google Scholar]
  18. Peralta Vera A. A., Del Carpio Beltrán H. J., Zúñiga Torres J. C., Milón Guzmán J. J., Braga S. L. Experimental Study of a Photovoltaic Direct Current Water Pumping System for Irrigation in Rural- Isolated Region of Arequipa, Peru. J. Sol. Energy Eng. Trans. ASME, 2019; vol. 141, no. 4. [Google Scholar]
  19. Rosas-Flores J. A., Zenón-Olvera E., Gálvez D. M. Potential energy saving in urban and rural households of Mexico with solar photovoltaic systems using geographical information system. Renew. Sustain. Energy Rev., 2019; vol. 116, p. 109412. [CrossRef] [Google Scholar]
  20. Toroghi S. H., Oliver M. E. Framework for estimation of the direct rebound effect for residential photovoltaic systems. Appl. Energy, 2019; vol. 251, p. 113391. [Google Scholar]
  21. Bailera M., Peña B., Lisbona P., Romeo L. M. Decision-making methodology for managing photovoltaic surplus electricity through Power to Gas: Combined heat and power in urban buildings. Appl. Energy, 2018; vol. 228, pp. 1032–1045. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.