Open Access
Issue
E3S Web Conf.
Volume 184, 2020
2nd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED 2020)
Article Number 01025
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202018401025
Published online 19 August 2020
  1. Fu, Tao, “High-Speed Successive Approximation Register (SAR) ADC Design with Multiple Concurrent Comparators” (2019). Electrical Engineering Theses and Dissertations. 28. [Google Scholar]
  2. Seyed Alireza, Zahrai Seyed, Alireza Zahrai, Marvin Onabajo: Review of Analog-To-Digital Conversion Characteristics and Design Considerations for the Creation of Power-Efficient Hybrid Data Converters, (April 2018), Journal of Low Power Electronics and Applications, DOI: 10.3390/jlpea8020012 [Google Scholar]
  3. M. Taherzadeh-Sani and A.A. Hamoui, “Digital Background Calibration of Capacitor-Mismatch Errors in Pipelined ADCs,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 9, pp. 966-970, (Sept. 2006) doi: 10.1109/TCSII.2006.879097 [Google Scholar]
  4. Ahmed and D.A. Johns, “An 11-Bit 45 MS/s Pipelined ADC With Rapid Calibration of DAC Errors in a Multibit Pipeline Stage,” in IEEE Journal of Solid-State Circuits, vol. 43, no. 7, pp. 1626-1637, (July 2008) doi: 10.1109/JSSC.2008.923724 [Google Scholar]
  5. L. Hung and T. Lee, “A Split-Based Digital Background Calibration Technique in Pipelined ADCs,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 11, pp. 855-859, (Nov. 2009). doi: 10.1109/TCSII.2009.2034077 [Google Scholar]
  6. A. Panigada and I. Galton, “A 130mW 100MS/s pipelined ADC with 69dB SNDR enabled by digital harmonic distortion correction,” 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, (2009), pp. 162-163,163a. [Google Scholar]
  7. C.C. Lee and M.P. Flynn, “A SAR-Assisted Two-Stage Pipeline ADC,” in IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 859-869, (April 2011). doi: 10.1109/JSSC.2011.2108133 [Google Scholar]
  8. B. Fang and J. Wu, “A 10-Bit 300-MS/s Pipelined ADC With Digital Calibration and Digital Bias Generation,” in IEEE Journal of Solid-State Circuits, vol. 48, no. 3, pp. 670-683, (March 20131). doi: 10.1109/JSSC.2012.2233332 [Google Scholar]
  9. S. Lee, A.P. Chandrakasan and H. Lee, “A 1 GS/s 10b 18.9 mW Time-Interleaved SAR ADC with Background Timing Skew Calibration,” in IEEE Journal of Solid-State Circuits, vol. 49, no. 12, pp. 2846-2856, (Dec. 2014). doi: 10.1109/JSSC.2014.2362851 [Google Scholar]
  10. G. Wang, F. Kacani and Y. Chiu, “IRD Digital Background Calibration of SAR ADC with Coarse Reference ADC Acceleration,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 1, pp. 11-15, (Jan. 2014). doi: 10.1109/TCSII.2013.2291051 [Google Scholar]
  11. H. Adel, M. Sabut and M. Louerat, “Split ADC Based Fully Deterministic Multistage Calibration for High Speed Pipeline ADCs,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 6, pp. 1481-1488, (June 2015). doi:10.1109/TCSI.2015.2416813 [Google Scholar]
  12. A. Fahmy, J. Liu, T. Kim and N. Maghari, “An All-Digital Scalable and Reconfigurable Wide-Input Range Stochastic ADC Using Only Standard Cells,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 8, pp. 731-735, (Aug. 2015). doi:10.1109/TCSII.2015.2415231 [Google Scholar]
  13. Hamidreza Mafia, Reza Mohammadib Hossein and Shamsib, “A statistics-based digital background calibration technique for pipelined ADCs Author links open overlay panel”, Tehran, Iran Received 3 September 2014, revised 23 May 2015, Accepted 26 July 2015, Available online 3 August (2015), published by Elsevier [Google Scholar]
  14. M.A. Montazerolghaem, T. Moosazadeh and M. Yavari, “A Predetermined LMS Digital Background Calibration Technique for Pipelined ADCs,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no. 9, pp. 841-845, Sept. 2015. doi:10.1109/TCSII.2015.2435071 [Google Scholar]
  15. R. Sehgal, F. van der Goes and K. Bult, “A 12 b 53 mW 195 MS/s Pipeline ADC with 82 dB SFDR Using Split-ADC Calibration,” in IEEE Journal of Solid-State Circuits, vol. 50, no. 7, pp. 1592-1603, July (2015). doi:10.1109/JSSC.2015.2436875 [Google Scholar]
  16. B. Murmann and B.E. Boser, “A 12-bit 75-MS/s pipelined ADC using open-loop residue amplification,” in IEEE Journal of Solid-State Circuits, vol. 38, no. 12, pp. 2040-2050, Dec. (2003). doi:10.1109/JSSC.2003.819167 [Google Scholar]
  17. J. McNeill, M.C.W. Coln and B.J. Larivee, ““Split ADC” architecture for deterministic digital background calibration of a 16-bit 1-MS/s ADC,” in IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2437-2445, Dec. (2005). doi:10.1109/JSSC.2005.856291 [Google Scholar]
  18. L. Dorrer, F. Kuttner, P. Greco, P. Torta and T. Hartig, “A 3-mW 74-dB SNR 2-MHz continuous-time delta-sigma ADC with a tracking ADC quantizer in 0.13-/spl mu/m [Google Scholar]
  19. A. Zandieh, P. Schvan and S.P. Voinigescu, “Design of a 55-nm SiGe BiCMOS 5-bit Time-Interleaved Flash ADC for 64-Gbd 16-QAM Fiberoptics Applications,” in IEEE Journal of Solid-State Circuits, vol. 54, no. 9, pp. 2375-2387, Sept. (2019). doi: 10.1109/JSSC.2019.2917155 [Google Scholar]
  20. B. Zeinali, T. Moosazadeh, M. Yavari and A. Rodriguez-Vazquez, “Equalization-Based Digital Background Calibration Technique for Pipelined ADCs,” in IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, vol. 22, no. 2, pp. 322-333, Feb. (2014). doi: 10.1109/TVLSI.2013.2242208 [Google Scholar]
  21. C. Liu, M. Huang and Y. Tu, “A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC,” in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2941-2950, Dec. 2016. doi: 10.1109/JSSC.2016.2591822 [Google Scholar]
  22. Masumeh Damghanian and Seyed Javad Azhari, A low power 6-bit MOS CML flash ADC with a novel multi-segment encoder for UWB applications, Integration, the VLSI Journal, (2017), http://dx.doi.org/10.1016/j.vlsi.2017.01.006 [Google Scholar]
  23. A.J. Ginés, E.J. Peralías and A. Rueda, “Black-Box Calibration for ADCs With Hard Nonlinear Errors Using a Novel INL-Based Additive Code: A Pipeline ADC Case Study,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 7, pp. 1718-1729, (July 2017). doi: 10.1109/TCSI.2017.2662085 [Google Scholar]
  24. B. Jeon, S. Hong and O. Kwon, “A Low-Power 12-Bit Extended Counting ADC Without Calibration for CMOS Image Sensors,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 7, pp. 824-828, (July 2018). doi: 10.1109/TCSII.2017.2717044 [Google Scholar]
  25. Kazeminia, S., INTEGRATION the VLSI journal (2017), http://dx.doi.org/10.1016/j.vlsi.2017.11.005 [Google Scholar]
  26. M.A. Montazerolghaem, T. Moosazadeh and M. Yavari, “A Single Channel Split ADC Structure for Digital Background Calibration in Pipelined ADCs,” in IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, vol. 25, no. 4, pp. 1563-1567, April (2017). doi: 10.1109/TVLSI.2016.2641259 [Google Scholar]
  27. S. Kazeminia, A real-time pseudo-background gain calibration strategy for residue amplifiers of pipeline ADCs, Integration, the VLSI Journal, (2018), http://dx.doi.org/10.1016/j.vlsi.2018.11.003 [Google Scholar]
  28. K. Muroya et al., “900-MHz, 3.5-mW, 8-bit pipelined subranging ADC combining flash ADC and TDC,” 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Seoul, (2017), pp. 7-9. doi: 10.1109/RFIT.2017.8048272 [Google Scholar]
  29. A. Wang, C.-J.R. Shi, A 10-bit 50-MS/s SAR ADC with 1 fJ/Conversion in 14 nm SOI FinFET CMOS, Integration, the VLSI Journal (2018), https://doi.org/10.1016/j.vlsi.2018.03.010 [Google Scholar]
  30. K. Yoshioka et al., “A 20-ch TDC/ADC Hybrid Architecture LiDAR SoC for 240 $\times$ 96 Pixel 200-m Range Imaging with Smart Accumulation Technique and Residue Quantizing SAR ADC,” in IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3026-3038, Nov. (2018). doi: 10.1109/JSSC.2018.2868315 [Google Scholar]
  31. A Review on an Efficient Architecture of Pipeline ADC for High Speed Applications, KB Vaibhav “A Meshram, International Journal of Engineering Research and Applications”, July (2019), pp 01-08, DOI: 10.9790/9622-0907060108 [Google Scholar]
  32. M. Savitha,R. Venkat Siva Reddy, “Dual split-three segment capacitor array Design Based Successive approximation ADC for Io-T ecosystem”, Integration, the VLSI Journal, Elsevier, November (2019) [Google Scholar]
  33. T. Hung, F. Liao and T. Kuo, “A 12-Bit Time-Interleaved 400-MS/s Pipelined ADC With Split-ADC Digital Background Calibration in 4,000 Conversions/Channel,” in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 11, pp. 1810-1814, Nov. (2019). [Google Scholar]
  34. M.H. Naderi, C. Park, S. Prakash, M. Kinyua, E.G. Soenen and J. Silva-Martinez, “A 27.7 fJ/conv-step 500 MS/s 12-Bit Pipelined ADC Employing a Sub-ADC Forecasting Technique and Low-Power Class AB Slew Boosted Amplifiers,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 9, pp. 3352-3364, Sept. (2019). [Google Scholar]
  35. A. Mahmoudi, et al., A study of analog decision feedback equalization for ADC-Based serial link receivers, Integration, the VLSI Journal (2018), https://doi.org/10.1016/j.vlsi.2018.09.003 [Google Scholar]
  36. Y. Zhou, B. Xu and Y. Chiu, “A 12-b 1-GS/s 31.5-mW Time-Interleaved SAR ADC with Analog HPF-Assisted Skew Calibration and Randomly Sampling Reference ADC,” in IEEE Journal of Solid-State Circuits, vol. 54, no. 8, pp. 2207-2218, Aug. (2019). [Google Scholar]
  37. J. Xu, P. Harpe and C. Van Hoof, “An Energy-Efficient and Reconfigurable Sensor IC for Bio-Impedance Spectroscopy and ECG Recording,” in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8, no. 3, pp. 616-626, Sept. (2018). [Google Scholar]
  38. K. Muroya et al., “900-MHz, 3.5-mW, 8-bit pipelined subranging ADC combining flash ADC and TDC,” 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Seoul, (2017), pp. 7-9. [Google Scholar]
  39. H. Fan et al., “High-resolution ADCs design in sensors,” 2018 IEEE 9th Latin American Symposium on Circuits & Systems (LASCAS), Puerto Vallarta, (2018), pp. 1-4. [Google Scholar]
  40. C. Chen et al., “A Pitch-Matched Front-End ASIC With Integrated Subarray Beamforming ADC for Miniature 3-D Ultrasound Probes,” in IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3050-3064, Nov. (2018). [Google Scholar]
  41. A. Gupta, A. Singh and A. Agarwal, “Highly-digital voltage scalable 4-bit flash ADC,” in IET Circuits, Devices & Systems, vol. 13, no. 1, pp. 91-97, 1 (2019). [Google Scholar]
  42. Bankupalli, P.T., Srikanth Babu, V., Suresh Kumar. T, “Modelling of static VAR compensator employing a cascaded H-bridged multilevel converter”, International Journal of Applied Engineering Research, vol. 10, no. 16, pp 37057-37062 [Google Scholar]
  43. A.A. Abualsaud, S. Qaisar, S.H. Ba-Abdullah, Z.M. Al-Sheikh and M. Akbar, “Design and implementation of a 5bit flash ADC for education,” 2016 5th International Conference on Electronic Devices, Systems and Applications (ICEDSA), Ras Al Khaimah, (2016), pp. 1-4. [Google Scholar]
  44. Ginés AJ, Peralías EJ, Aledo C, Rueda A. Fast adaptive comparator offset calibration in pipeline ADC with self‐repairing thermometer to binary encoder. Int J Circ Theor Appl. (2019) ;1-17. https://doi.org/10.1002/cta.2594 [Google Scholar]
  45. Xiangyu Liu1, Hui Xu, Yinan Wang, Yingqiang Dai, Nan Li, and Guiqing Liu, “Calibration for Sample-and-Hold Mismatches in M-Channel TI ADCs Based on Statistics”, in Applied Sciences (MDPI publisher), Jan (2019) doi: 10.3390/app9010198, [Google Scholar]
  46. Jingyu Li, Jiameng Pan and Yue Zhang, “Automatic Calibration Method of Channel Mismatches for Wideband TI-ADC System”, in Electronics (MDPI publisher), (2019), 8, 56; doi:10.3390/electronics8010056 [Google Scholar]
  47. J Monica and P. Kannan, “A REVIEW ON DESIGN OF PIPELINED ADC”, in International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 3 Issue 11, November (2014) [Google Scholar]
  48. A.S. Korotkov, Methods of calibration and correction of analog-to-digital converters (review). Russ Microelectron 43, 226-237 (2014). https://doi.org/10.1134/S1063739714030044 [Google Scholar]
  49. Xin Li, Cheng Huang, Desheng Ding and Jianhui Wu, A Review on Calibration Methods of Timing-skew in Time-interleaved ADCs, Journal of Circuits, Systems and Computers, March (2019), doi: 10.1142/S0218126620300020 [Google Scholar]
  50. Seyed Alireza Zahrai and Marvin Onabajo, “Review of Analog-To-Digital Conversion Characteristics and Design Considerations for the Creation of Power-Efficient Hybrid Data Converters”, in Journal of Low Power Electronics and Applications, (2018), 8, 12; doi:10.3390/jlpea8020012 [Google Scholar]
  51. B. Xu and Y. Chiu, “Comprehensive Background Calibration of Time-Interleaved Analog-to-Digital Converters,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 5, pp. 1306-1314, May (2015). [Google Scholar]
  52. Silpa Kesav, K.S. Nayanathara and B.K. Madhavi, “DESIGN OF LOW POWER SAR ADC FOR ECG USING 45nm CMOS TECHNOLOGY” in International Journal of VLSI design & Communication Systems (VLSICS) Vol.8, No.1, February (2017) 10.1109/RFIT.2017.8048272 [Google Scholar]
  53. E. Santin, L.B. Oliveira, B. Nowacki and J. Goes, “A Fully Integrated and Reconfigurable Architecture for Coherent Self-Testing of High-Speed Analog-to-Digital Converters,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 7, pp. 1531-1541, July (2011). [Google Scholar]
  54. P. Ramakrishna, K. Hari Kishore, “Design of Low Power 10GS/s 6-Bit DAC using CMOS Technology” International Journal of Engineering and Technology Volume-7, Issue-2, Jan – (2018). [Google Scholar]
  55. Frank M. Yaul, Anantha P. Chandrakasan “A 10b 0.6nW SAR ADC with Data-Dependent Energy Savings Using LSB-First Successive Approximation” IEEE International Solid-State Circuits Conference (2014) [Google Scholar]
  56. Sunghyuk Lee, Anantha P. Chandrakasan, Hae-Seung Lee, “A 1 GS/s 10b 18.9 mW Time- Interleaved SAR ADC With Background Timing Skew Calibration” IEEE JOURNAL OF SOLIDSTATE CIRCUITS, VOL. 49, NO. 12, DECEMBER (2014) [Google Scholar]
  57. Ahmed M. A. Ali, Christopher Dillon, Robert Sneed, Andrew S. Morgan, Scott Bardsley, John Kornblum, and Lu Wu “A 14-bit 125 MS/s IF/RF Sampling Pipelined ADC With 100 dB SFDR and 50 fs Jitter” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 8, AUGUST (2006 ) [Google Scholar]
  58. Yunzhi Dong, William Yang, Richard Schreier, Ali Sheikholeslami, Sudhir Korrapati “A Continuous-Time 0– 3 MASH ADC Achieving 88 dB DR With 53 MHz BW in 28 nm CMOS” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 12, DECEMBER (2014) [Google Scholar]
  59. Daniel R. McMahill, Dwaine S. Hurta, Brian Brandt, Miaochen Wu, Paul Kalthoff, Geir S. Ostrem, “A 160 Channel QAM Modulator With 4.6 Gsps 14 Bit DAC” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 49, NO. 12, DECEMBER (2014) [Google Scholar]
  60. Luca Bettini, Thomas Christen, Thomas Burger and Qiuting Huang “A Reconfigurable DT Sigma Modulator for Multi-Standard 2G/3G/4G Wireless Receivers” IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2156-3357, September 18, (2015) [Google Scholar]
  61. Yang Xu, Zehong Zhang, Baoyong Chi, Nan Qi, Hualin Cai and Zhihua Wang “A 5-/20-MHz BW Reconfigurable Quadrature Bandpass CT Sigma ADC With Anti-Pole-Splitting Opamp and Digital I /Q Calibration” IEEE TRANSACTIONS ON VERY LARGE-SCALE INTEGRATION (VLSI) SYSTEMS 1063-8210 © (2015) IEEE. [Google Scholar]
  62. Sayfe Kiaei, Eby G. Friedman “Introduction to the Special Issue on Low Power Wireless Communications” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 6, JUNE (1997) [Google Scholar]
  63. T. Christen and Q. Huang, “A 0.13 CMOS 0.1–20 MHz bandwidth 86–70 dB DR multi-mode DT ADC for IMT-advanced,” in Proc.IEEE Eur. Solid-State Circuits Conf., Sep. (2010), pp. 414-417. [Google Scholar]
  64. Terence C. Randall, Ifana Mahbub, Syed K. Islam “Reconfigurable Analog-to-Digital Converter for Implantable Bioimpedance Monitoring” BioWireleSS (2015), 78-1-4799-5511- 4/15@2015-IEEE [Google Scholar]
  65. Huailiang Li and Jing Hu, The Research on SAR ADC Integrated Circuit (2019), doi:10.1088/1742-6596/1314/1/012022 [Google Scholar]
  66. J. Park, D. Kim, T. An, M. Kim, G. Ahn and S. Lee, “12 b 50 MS/s 0.18 μm CMOS SAR ADC based on highly linear C-R hybrid DAC,” in Electronics Letters, vol. 56, no. 3, pp. 119-121, 6 2 (2020) [Google Scholar]
  67. B.D. Kumar, H. Shrimali and N. Gupta, “A 6-Bit, 29.56 fJ/Conv-Step, Voltage Scalable Flash-SAR Hybrid ADC in 28 nm CMOS,” 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, (2019), pp. 1-5. [Google Scholar]
  68. T. Lee, B. Verbruggen and U. Moon, “Session 28 overview: Hybrid ADCs,” 2017 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, (2017), pp. 464-465. [Google Scholar]
  69. K. Yoshioka et al., “Digital Amplifier: A Power-Efficient and Process-Scaling Amplifier for Switched Capacitor Circuits,” in IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2575-2586, Nov. (2019). [Google Scholar]
  70. K. Yoshioka, A. Shikata, R. Sekimoto, T. Kuroda and H. Ishikuro, “An 8 bit 0.3–0.8 V 0.2–40 MS/s 2-bit/Step SAR ADC With Successively Activated Threshold Configuring Comparators in 40 nm CMOS,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 2, pp. 356-368, Feb. (2015). [Google Scholar]
  71. K. Yoshioka, R. Saito, T. Danjo, S. Tsukamoto and H. Ishikuro, “Dynamic Architecture and Frequency Scaling in 0.8–1.2 GS/s 7 b Subranging ADC,” in IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp. 932-945, (April 2015). [Google Scholar]
  72. Yoshioka, K., Sugimoto, T., Waki, N., Kim, S., Kurose, D., Ishii, H., ... & Itakura, T, “28.7 A 0.7 V 12b 160MS/s 12.8 fJ/conv-step pipelined-SAR ADC in 28nm CMOS with digital amplifier technique. In 2017 IEEE International Solid-State Circuits Conference (ISSCC) (pp. 478-479). IEEE. [Google Scholar]
  73. Yoshioka, Kentaro, Ryo Saito, Takumi Danjo, Sanroku Tsukamoto, and Hiroki Ishikuro. “7-bit 0.8–1.2 GS/s dynamic architecture and frequency scaling subrange ADC with binary-search/flash live configuring technique.” In 2014 Symposium on VLSI Circuits Digest of Technical Papers, pp. 1-2. IEEE, (2014). [Google Scholar]
  74. K. Yoshioka, A. Shikata, R. Sekimoto, T. Kuroda and H. Ishikuro, “An 8 bit 0.3–0.8 V 0.2–40 MS/s 2-bit/Step SAR ADC With Successively Activated Threshold Configuring Comparators in 40 nm CMOS,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, no. 2, pp. 356-368, Feb. (2015). [Google Scholar]
  75. K. Yoshioka, A. Shikata, R. Sekimoto, T. Kuroda and H. Ishikuro, “A 0.0058mm2 7.0 ENOB 24MS/s 17fJ/conv. threshold configuring SAR ADC with source voltage shifting and interpolation technique,” (2013) Symposium on VLSI Circuits, Kyoto, 2013, pp. C266-C267. [Google Scholar]
  76. Yoshioka, Kentaro, Akira Shikata, Ryota Sekimoto, Tadahiro Kuroda, and Hiroki Ishikuro. “A 0.35-0.8 V 8b 0.5-35MS/s 2bit/step extremely-low power SAR ADC.” In 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 111-112. IEEE, (2013). [Google Scholar]
  77. Yoshioka, Kentaro, Akira Shikata, Ryota Sekimoto, Tadahiro Kuroda, and Hiroki Ishikuro. “An 8bit 0.35–0.8 V 0.5–30MS/s 2bit/step SAR ADC with wide range threshold configuring comparator.” In 2012 Proceedings of the ESSCIRC (ESSCIRC), pp. 381-384. IEEE, (2012). [Google Scholar]
  78. B. Murmann, “ADC Performance Survey 1997-2020,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html. [Google Scholar]
  79. Zahrai, S. A., Zlochisti, M., Le Dortz, N., & Onabajo, M. (2017). A low-power high-speed hybrid ADC with merged sample-and-hold and DAC functions for efficient subranging time-interleaved operation. IEEE Transactions on Very Large-Scale Integration (VLSI) Systems, 25(11), 3193-3206. [Google Scholar]
  80. S. Kim and K. Kwon, “A hybrid ADC combining capacitive DAC-based multi-bit/cycle SAR ADC with flash ADC,” 2016 International Conference on Electronics, Information, and Communications (ICEIC), Da Nang, (2016), pp. 1-4. [Google Scholar]
  81. Gönen, Burak, Fabio Sebastiano, Robert van Veldhoven, and Kofi AA Makinwa. “A hybrid ADC for high resolution: The zoom ADC.” In Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V & Advanced Node Analog Circuit Design, pp. 99-117. Springer, Cham, (2018). [Google Scholar]
  82. Molaei, Hasan, Khosrow Hajsadeghi, and Ata Khorami. “Design of low power comparator-reduced hybrid ADC.” Microelectronics Journal 79 (2018): 79-90. [Google Scholar]
  83. Kim, Min-Kyu, Min-Seok Shin, Yun-Rae Jo, Jong-Boo Kim, Jaseung Gou, Sangdong Yoo, and Oh-Kyong Kwon. “A ΔΣ-cyclic hybrid ADC for parallel readout sensor applications.” In 2012 IEEE International Symposium on Circuits and Systems, pp. 532-535. IEEE, (2012). [Google Scholar]
  84. Jianwen Li 1,2, Xuan Guo 1,*, Jian Luan 1,2, Danyu Wu 1, Lei Zhou 1, Nanxun Wu 2, Yinkun Huang 1, Hanbo Jia 1,2, Xuqiang Zheng 1, Jin Wu 1 and Xinyu Liu, “A 1 GS/s 12Bit Pipelined/SAR Hybrid ADC in 40 nm CMOS Technology” in Electronics (MDPI), Feb (2020) [Google Scholar]
  85. Razzaq, Anas, and Shabbir Majeed Chaudhry. “A 15-Bit 85 MS/s Hybrid Flash-SAR ADC in 90-nm CMOS.” Circuits, Systems, and Signal Processing 37.4 (2018): 1452-1478. [Google Scholar]
  86. Huang, Zhaofeng, et al. “A 16-bit Hybrid ADC with Circular-Adder-Based Counting for 15μm Pitch 640× 512 LWIR FPAs.” Chinese Journal of Electronics 29.2 (2020): 291-296. [Google Scholar]
  87. Lee, Hsun-Cheng, and Jacob A. Abraham. “A novel low power 11-bit hybrid ADC using flash and delay line architectures.” 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, (2014). [Google Scholar]
  88. Dutt, Samir. “A novel 10-bit hybrid ADC using flash and delay line architectures.” PhD diss., (2011). [Google Scholar]
  89. C. Lee and M.P. Flynn, “A SAR Assisted 2-Stage Pipeline ADC,” IEEE Journal of Solid-State Circuits, (April 2011) [Google Scholar]
  90. C. Lee and M.P. Flynn, “A 12b 50MS/s 3.5mW SAR Assisted 2-Stage Pipeline ADC,” IEEE Symposium on VLSI Circuits, (June 2010) [Google Scholar]
  91. Brandolini, M., Shin, Y., Raviprakash, K., Wang, T., Wu, R., Geddada, H. M., ... & Hsieh, M. H. (2015, February). 26.6 a 5gs/s 150mw 10b sha-less pipelined/sar hybrid adc in 28nm cmos. In (2015) IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers (pp. 1-3). IEEE. [Google Scholar]
  92. Mo, Jianhua, et al. “Hybrid architectures with few-bit ADC receivers: Achievable rates and energy-rate tradeoffs.” IEEE Transactions on Wireless Communications 16.4 (2017): 2274-2287. [Google Scholar]
  93. Fang, Xiang, et al. “CMOS 12 bits 50kS/s micropower SAR and dual-slope hybrid ADC.” 2009 52nd IEEE International Midwest Symposium on Circuits and Systems. IEEE, (2009). [Google Scholar]
  94. Shafik, Ayman, et al. “3.6 A 10Gb/s hybrid ADC-based receiver with embedded 3-tap analog FFE and dynamically-enabled digital equalization in 65nm CMOS.” 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers. IEEE, (2015). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.