Open Access
Issue |
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
|
|
---|---|---|
Article Number | 03031 | |
Number of page(s) | 8 | |
Section | Medical Biology and Medical Signal Processing | |
DOI | https://doi.org/10.1051/e3sconf/202018503031 | |
Published online | 01 September 2020 |
- Prince, M., et al., World Alzheimer Report 2015: the Global Impact of Dementia. 2015, Alzheimer’s Disease International: London. [Google Scholar]
- Lane, C.A., J. Hardy, and J.M. Schott, Alzheimer’s disease. Eur J Neurol, 2018. 25(1): p. 59–70. [CrossRef] [PubMed] [Google Scholar]
- Long, J.M. and D.M. Holtzman, Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell, 2019. 179(2): p. 312–339. [CrossRef] [PubMed] [Google Scholar]
- Dementia: A Public Health Priority. 2012, World Health Organisation: Geneva. [Google Scholar]
- 2020 Alzheimer’s disease facts and figures, in Alzheimers Dement. 2020, Alzheimers Dement. [Google Scholar]
- Chan, K.Y., et al., Epidemiology of Alzheimer’s disease and other forms of dementia in China, 1990-2010: a systematic review and analysis. Lancet, 2013. 381(9882): p. 2016–23. [CrossRef] [PubMed] [Google Scholar]
- Xu, J., et al., The economic burden of dementia in China, 1990-2030: implications for health policy. Bull World Health Organ, 2017. 95(1): p. 18–26. [CrossRef] [PubMed] [Google Scholar]
- Jia, L., et al., Dementia in China: epidemiology, clinical management, and research advances. The Lancet Neurology, 2020. 19(1): p. 81–92. [CrossRef] [PubMed] [Google Scholar]
- Zhang, M.Y., et al., The prevalence of dementia and Alzheimer’s disease in Shanghai, China: impact of age, gender, and education. Ann Neurol, 1990. 27(4): p. 428–37. [CrossRef] [PubMed] [Google Scholar]
- Li, K., et al., The Prevalence of Alzheimer’s Disease in China: A Systematic Review and Meta-analysis. Iran J Public Health, 2018. 47(11): p. 1615–1626. [PubMed] [Google Scholar]
- Brookmeyer, R., et al., Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimers Dement, 2018. 14(2): p.121–129. [CrossRef] [PubMed] [Google Scholar]
- Matthews, K.A., et al., Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015-2060) in adults aged >/=65 years. Alzheimers Dement, 2019. 15(1): p. 17–24. [CrossRef] [PubMed] [Google Scholar]
- Clay, E., et al., Economic burden for Alzheimer’s disease in China from 2010 to 2050: a modelling study. J Mark Access Health Policy, 2019. 7(1): p.1667195. [CrossRef] [PubMed] [Google Scholar]
- Jia, J., et al., The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement, 2018. 14(4): p. 483–491. [CrossRef] [PubMed] [Google Scholar]
- Patterson, C., World Alzheimer Report 2018. 2018, Alzheimer’s Disease International: London. [Google Scholar]
- Lin, L., L.J. Zheng, and L.J. Zhang, Neuroinflammation, Gut Microbiome, and Alzheimer’s Disease. Mol Neurobiol, 2018. 55(11): p.8243–8250. [CrossRef] [PubMed] [Google Scholar]
- Karch, C.M. and A.M. Goate, Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry, 2015. 77(1): p. 43–51. [CrossRef] [PubMed] [Google Scholar]
- Vassar, R., et al., Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science, 1999. 286(5440): p. 735–41. [Google Scholar]
- Masters, C.L., et al., Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A, 1985. 82(12): p. 4245–9. [CrossRef] [PubMed] [Google Scholar]
- Haass, C., et al., Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med, 2012. 2(5): p. a006270. [Google Scholar]
- Yang, G., et al., Structural basis of Notch recognition by human gamma-secretase. Nature, 2019. 565(7738): p. 192–197. [PubMed] [Google Scholar]
- Zhou, R., et al., Recognition of the amyloid precursor protein by human gamma-secretase. Science, 2019. 363(6428). [Google Scholar]
- Kamenetz, F., et al., APP processing and synaptic function. Neuron, 2003. 37(6): p. 925–37. [CrossRef] [PubMed] [Google Scholar]
- Wei, W., et al., Amyloid beta from axons and dendrites reduces local spine number and plasticity. Nat Neurosci, 2010. 13(2): p. 190–6. [CrossRef] [PubMed] [Google Scholar]
- Nortley, R., et al., Amyloid beta oligomers constrict human capillaries in Alzheimer’s disease via signaling to pericytes. Science, 2019. 365(6450). [Google Scholar]
- Sosna, J., et al., Early long-term administration of the CSF1R inhibitor PLX3397 ablates microglia and reduces accumulation of intraneuronal amyloid, neuritic plaque deposition and pre-fibrillar oligomers in 5XFAD mouse model of Alzheimer’s disease. Mol Neurodegener, 2018. 13(1): p. 11. [CrossRef] [PubMed] [Google Scholar]
- Nelson, P.T., et al., Correlation of Alzheimer’s disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol, 2012. 71(5): p. 362–81. [CrossRef] [PubMed] [Google Scholar]
- Hardy, J.A. and G.A. Higgins, Alzheimer’s disease: the amyloid cascade hypothesis. Science, 1992. 256(5054): p. 184–5. [Google Scholar]
- Braak, H. and E. Braak, Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol, 1991. 82(4): p. 239–59. [CrossRef] [PubMed] [Google Scholar]
- Marcelli, S., et al., The Involvement of Post- Translational Modifications in Alzheimer’s Disease. Curr Alzheimer Res, 2018. 15(4): p. 313–335. [CrossRef] [PubMed] [Google Scholar]
- Mandelkow, E., et al., Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol, 2007. 17(1): p. 83–90. [CrossRef] [PubMed] [Google Scholar]
- Liu, L., et al., Trans-synaptic spread of tau pathology in vivo. PLoS One, 2012. 7(2): p. e31302. [CrossRef] [PubMed] [Google Scholar]
- Clavaguera, F., et al., Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A, 2013. 110(23): p. 9535–40. [CrossRef] [PubMed] [Google Scholar]
- Iba, M., et al., Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci, 2013. 33(3): p. 1024–37. [CrossRef] [PubMed] [Google Scholar]
- de Calignon, A., et al., Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron, 2012. 73(4): p. 685–97. [CrossRef] [PubMed] [Google Scholar]
- Hanseeuw, B.J., et al., Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. JAMA Neurol, 2019. [Google Scholar]
- Crary, J.F., et al., Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol, 2014. 128(6): p. 755–66. [CrossRef] [PubMed] [Google Scholar]
- Price, J.L. and J.C. Morris, Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol, 1999. 45(3): p. 358–68. [CrossRef] [PubMed] [Google Scholar]
- Price, J.L., et al., Neuropathology of nondemented aging: presumptive evidence for preclinical Alzheimer disease. Neurobiol Aging, 2009. 30(7): p. 1026–36. [Google Scholar]
- Corder, E.H., et al., Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 1993. 261(5123): p. 921–3. [Google Scholar]
- Strittmatter, W.J., et al., Apolipoprotein E: high- avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A, 1993. 90(5): p. 1977–81. [CrossRef] [PubMed] [Google Scholar]
- Liu, C.C., et al., ApoE4 Accelerates Early Seeding of Amyloid Pathology. Neuron, 2017. 96(5): p. 1024–1032 e3. [CrossRef] [PubMed] [Google Scholar]
- Huynh, T.V., et al., Age-Dependent Effects of apoE Reduction Using Antisense Oligonucleotides in a Model of beta-amyloidosis. Neuron, 2017. 96(5): p. 1013–1023 e4. [CrossRef] [PubMed] [Google Scholar]
- Shi, Y., et al., ApoE4 markedly exacerbates tau- mediated neurodegeneration in a mouse model of tauopathy. Nature, 2017. 549(7673): p. 523–527. [PubMed] [Google Scholar]
- Zhao, N., et al., APOE epsilon2 is associated with increased tau pathology in primary tauopathy. Nat Commun, 2018. 9(1): p. 4388. [CrossRef] [PubMed] [Google Scholar]
- Wang, H. and X. Yu, Epidemiological status of Alzheimer’s disease in China. Chinese Journal of General Practitioners, 2006(06): p. 358–360. [Google Scholar]
- Liu, B., J. Wang, and Y. Xiao, Meta-analysis of the prevalence of dementia in elderly people aged 60 years and over in China. Chinese Journal of Epidemiol, 2016. 37(11): p. 1541–1545. [Google Scholar]
- Nebel, R.A., et al., Understanding the impact of sex and gender in Alzheimer’s disease: A call to action. Alzheimer’s Dement, 2018. 14(9): p. 1171–1183. [CrossRef] [Google Scholar]
- Ferretti, M.T., et al., Sex differences in Alzheimer’s disease - the gateway to precision medicine. Nat Rev Neurol, 2018. 14(8): p. 457–469. [CrossRef] [PubMed] [Google Scholar]
- Guo, X.-E., Multivariate Bayesian Meta-Analysis of the Prevalence of Alzheimer’s Disease. J Fourth Mil Med Uniy, 2001. 22(13): p. 1185–1186. [Google Scholar]
- Liu, N., Status of epidemiology of Alzheimer’s disease. Journal of Liaoning University of Tcm, 2011. 13(1). [Google Scholar]
- Yang, Q., Epidemiological characteristics of Alzheimer’s disease in China. Chinese Journal of Clinical Rehabilitation, 2004. 8(31): p. 6982–6983. [Google Scholar]
- Xin, J., A Comparative Study of Chinese and American Women’s Higher Education from a Fair Perspective. Education and Examinations, 2013(4). [Google Scholar]
- Zhang, W., Epidemiological survey of mental diseases in seven regions of China. Chinese Journal of Psychiatry, 1998(02). [Google Scholar]
- Vermunt, L., et al., Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimer’s Dement, 2019. 15(7): p. 888–898. [CrossRef] [Google Scholar]
- De Strooper, B. and E. Karran, The Cellular Phase of Alzheimer’s Disease. Cell, 2016. 164(4): p. 603–15. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.