Open Access
Issue |
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
|
|
---|---|---|
Article Number | 03032 | |
Number of page(s) | 10 | |
Section | Medical Biology and Medical Signal Processing | |
DOI | https://doi.org/10.1051/e3sconf/202018503032 | |
Published online | 01 September 2020 |
- Straimer, J.; Lee, M. C.; Lee, A. H.; Zeitler, B.; Williams, A. E.; Pearl, J. R.; Zhang, L.; Rebar, E. J.; Gregory, P. D.; Llinas, M.; Urnov, F. D.; Fidock, D. A., Site-specific genome editing in Plasmodium falciparum using engineered zinc-finger nucleases. Nat Methods 2012, 9(10), 993–8. [CrossRef] [PubMed] [Google Scholar]
- Zheng, A.; Chevalier, N.; Calderoni, M.; Dubuis, G.; Dormond, O.; Ziros, P. G.; Sykiotis, G. P.; Widmann, C., CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma. Oncotarget 2019, 10(66), 7058–7070. [CrossRef] [PubMed] [Google Scholar]
- Zhao, W. S.; Yan, W. P.; Chen, D. B.; Dai, L.; Yang, Y. B.; Kang, X. Z.; Fu, H.; Chen, P.; Deng, K. J.; Wang, X. Y.; Xie, X. W.; Chen, H. S.; Chen, K. N., Genome-scale CRISPR activation screening identifies a role of ELAVL2-CDKN1A axis in paclitaxel resistance in esophageal squamous cell carcinoma. Am J Cancer Res 2019, 9(6), 1183–1200. [PubMed] [Google Scholar]
- Sakuma, T.; Nishikawa, A.; Kume, S.; Chayama, K.; Yamamoto, T., Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system. Sci Rep 2014, 4, 5400. [CrossRef] [PubMed] [Google Scholar]
- Zeng, H.; Castillo-Cabrera, J.; Manser, M.; Lu, B.; Yang, Z.; Strande, V.; Begue, D.; Zamponi, R.; Qiu, S.; Sigoillot, F.; Wang, Q.; Lindeman, A.; Reece- Hoyes, J. S.; Russ, C.; Bonenfant, D.; Jiang, X.; Wang, Y.; Cong, F., Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC. Elife 2019, 8. [Google Scholar]
- Ye, S.; Chen, G.; Kohnen, M. V.; Wang, W.; Cai, C.; Ding, W.; Wu, C.; Gu, L.; Zheng, Y.; Ma, X.; Lin, C.; Zhu, Q., Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro). Plant Biotechnol J 2019. [Google Scholar]
- Chen, S.; Sanjana, N. E.; Zheng, K.; Shalem, O.; Lee, K.; Shi, X.; Scott, D. A.; Song, J.; Pan, J. Q.; Weissleder, R.; Lee, H.; Zhang, F.; Sharp, P. A., Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 2015, 160(6), 1246–60. [CrossRef] [PubMed] [Google Scholar]
- Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 1987, 169(12), 5429–33. [CrossRef] [PubMed] [Google Scholar]
- Cong, L.; Ran, F. A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X.; Jiang, W.; Marraffini, L. A.; Zhang, F., Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339(6121), 819–23. [Google Scholar]
- Fu, Y.; Foden, J. A.; Khayter, C.; Maeder, M. L.; Reyon, D.; Joung, J. K.; Sander, J. D., High- frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013, 31(9), 822–6. [CrossRef] [PubMed] [Google Scholar]
- Miller, J. C.; Tan, S.; Qiao, G.; Barlow, K. A.; Wang, J.; Xia, D. F.; Meng, X.; Paschon, D. E.; Leung, E.; Hinkley, S. J.; Dulay, G. P.; Hua, K. L.; Ankoudinova, I.; Cost, G. J.; Urnov, F. D.; Zhang, H. S.; Holmes, M. C.; Zhang, L.; Gregory, P. D.; Rebar, E. J., A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011, 29(2), 143–8. [CrossRef] [PubMed] [Google Scholar]
- CRISPR-based technologies for cell biology. Nat Cell Biol 2019, 21 (12), 1463. [CrossRef] [PubMed] [Google Scholar]
- Hatoum-Aslan, A.; Maniv, I.; Samai, P.; Marraffini, L. A., Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system. J Bacteriol 2014, 196(2), 310–7. [CrossRef] [PubMed] [Google Scholar]
- Morisaka, H.; Yoshimi, K.; Okuzaki, Y.; Gee, P.; Kunihiro, Y.; Sonpho, E.; Xu, H.; Sasakawa, N.; Naito, Y.; Nakada, S.; Yamamoto, T.; Sano, S.; Hotta, A.; Takeda, J.; Mashimo, T., CRISPR-Cas3 induces broad and unidirectional genome editing in human cells. Nat Commun 2019, 10 (1), 5302. [CrossRef] [PubMed] [Google Scholar]
- Picco, G.; Chen, E. D.; Alonso, L. G.; Behan, F. M.; Goncalves, E.; Bignell, G.; Matchan, A.; Fu, B.; Banerjee, R.; Anderson, E.; Butler, A.; Benes, C. H.; McDermott, U.; Dow, D.; Iorio, F.; Stronach, E.; Yang, F.; Yusa, K.; Saez-Rodriguez, J.; Garnett, M. J., Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR- Cas9 screening. Nat Commun 2019, 10 (1), 2198. [CrossRef] [PubMed] [Google Scholar]
- Szlachta, K.; Kuscu, C.; Tufan, T.; Adair, S. J.; Shang, S.; Michaels, A. D.; Mullen, M. G.; Fischer, N. L.; Yang, J.; Liu, L.; Trivedi, P.; Stelow, E. B.; Stukenberg, P. T.; Parsons, J. T.; Bauer, T. W.; Adli, M., CRISPR knockout screening identifies combinatorial drug targets in pancreatic cancer and models cellular drug response. Nat Commun 2018, 9 (1), 4275. [CrossRef] [PubMed] [Google Scholar]
- Reeks, J.; Naismith, J. H.; White, M. F., CRISPR interference: a structural perspective. Biochem J 2013, 453(2), 155–66. [CrossRef] [PubMed] [Google Scholar]
- Wang, T.; Guan, C.; Guo, J.; Liu, B.; Wu, Y.; Xie, Z.; Zhang, C.; Xing, X. H., Pooled CRISPR interference screening enables genome-scale functional genomics study in bacteria with superior performance. Nat Commun 2018, 9 (1), 2475. [CrossRef] [PubMed] [Google Scholar]
- Xu, S.; Zhan, M.; Jiang, C.; He, M.; Yang, L.; Shen, H.; Huang, S.; Huang, X.; Lin, R.; Shi, Y.; Liu, Q.; Chen, W.; Mohan, M.; Wang, J., Genome-wide CRISPR screen identifies ELP5 as a determinant of gemcitabine sensitivity in gallbladder cancer. Nat Commun 2019, 10 (1), 5492. [CrossRef] [PubMed] [Google Scholar]
- Chylinski, K.; Makarova, K. S.; Charpentier, E.; Koonin, E. V., Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 2014, 42(10), 6091–105. [CrossRef] [PubMed] [Google Scholar]
- Hsu, P. D.; Lander, E. S.; Zhang, F., Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157(6), 1262–78. [CrossRef] [PubMed] [Google Scholar]
- Cui, L.; Wang, X.; Huang, D.; Zhao, Y.; Feng, J.; Lu, Q.; Pu, Q.; Wang, Y.; Cheng, G.; Wu, M.; Dai, M., CRISPR-cas3 of Salmonella Upregulates Bacterial Biofilm Formation and Virulence to Host Cells by Targeting Quorum-Sensing Systems. Pathogens 2020, 9 (1). [Google Scholar]
- Evans, B. A.; Smith, O. L.; Pickerill, E. S.; York, M. K.; Buenconsejo, K. J. P.; Chambers, A. E.; Bernstein, D. A., Restriction digest screening facilitates efficient detection of site-directed mutations introduced by CRISPR in C. albicans UME6. PeerJ 2018, 6, e4920. [Google Scholar]
- Deltcheva, E.; Chylinski, K.; Sharma, C. M.; Gonzales, K.; Chao, Y.; Pirzada, Z. A.; Eckert, M. R.; Vogel, J.; Charpentier, E., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471(7340), 602–7. [CrossRef] [PubMed] [Google Scholar]
- Wang, X.; Ma, Y.; Wang, F.; Yang, Y.; Wu, S.; Wu, Y., Disruption of nicotinic acetylcholine receptor alpha6 mediated by CRISPR/Cas9 confers resistance to spinosyns in Plutella xylostella. Pest Manag Sci 2019. [Google Scholar]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337(6096), 816–21. [Google Scholar]
- Zhang, H.; Zhang, J.; Wei, P.; Zhang, B.; Gou, F.; Feng, Z.; Mao, Y.; Yang, L.; Zhang, H.; Xu, N.; Zhu, J. K., The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 2014, 12(6), 797–807. [CrossRef] [PubMed] [Google Scholar]
- Guo, J.; Li, K.; Jin, L.; Xu, R.; Miao, K.; Yang, F.; Qi, C.; Zhang, L.; Botella, J. R.; Wang, R.; Miao, Y., A simple and cost-effective method for screening of CRISPR/Cas9-induced homozygous/biallelic mutants. Plant Methods 2018, 14, 40. [CrossRef] [PubMed] [Google Scholar]
- Erpen-Dalla Corte, L.; L, M. M.; T, S. M.; Mou, Z.; J, W. G.; Dutt, M., Development of Improved Fruit, Vegetable, and Ornamental Crops Using the CRISPR/Cas9 Genome Editing Technique. Plants (Basel) 2019, 8 (12). [Google Scholar]
- Garrett, A. M.; Bosch, P. J.; Steffen, D. M.; Fuller, L. C.; Marcucci, C. G.; Koch, A. A.; Bais, P.; Weiner, J. A.; Burgess, R. W., CRISPR/Cas9 interrogation of the mouse Pcdhg gene cluster reveals a crucial isoform-specific role for Pcdhgc4. PLoS Genet 2019, 15 (12), e1008554. [CrossRef] [PubMed] [Google Scholar]
- Morio, F.; Lombardi, L.; Butler, G., The CRISPR toolbox in medical mycology: State of the art and perspectives. PLoS Pathog 2020, 16 (1), e1008201. [CrossRef] [PubMed] [Google Scholar]
- Koslova, A.; Trefil, P.; Mucksova, J.; Reinisova, M.; Plachy, J.; Kalina, J.; Kucerova, D.; Geryk, J.; Krchlikova, V.; Lejckova, B.; Hejnar, J., Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proc Natl Acad Sci U S A 2020. [Google Scholar]
- Wang, G.; Chow, R. D.; Ye, L.; Guzman, C. D.; Dai, X.; Dong, M. B.; Zhang, F.; Sharp, P. A.; Platt, R. J.; Chen, S., Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV- CRISPR-mediated direct in vivo screening. Sci Adv 2018, 4 (2), eaao5508. [CrossRef] [PubMed] [Google Scholar]
- Borowicz, P.; Chan, H.; Medina, D.; Gumpelmair, S.; Kjelstrup, H.; Spurkland, A., A simple and efficient workflow for generation of knock-in mutations in Jurkat T cells using CRISPR/Cas9. Scand J Immunol 2019, e12862. [Google Scholar]
- Hao, Y.; Zong, W.; Zeng, D.; Han, J.; Chen, S.; Tang, J.; Zhao, Z.; Li, X.; Ma, K.; Xie, X.; Zhu, Q.; Chen, Y.; Zhao, X.; Guo, J.; Liu, Y. G., Shortened snRNA promoters for efficient CRISPR/Cas-based multiplex genome editing in monocot plants. Sci China Life Sci 2020. [Google Scholar]
- Shalem, O.; Sanjana, N. E.; Hartenian, E.; Shi, X.; Scott, D. A.; Mikkelson, T.; Heckl, D.; Ebert, B. L.; Root, D. E.; Doench, J. G.; Zhang, F., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 2014, 343(6166), 84–87. [Google Scholar]
- Wang, T.; Wei, J. J.; Sabatini, D. M.; Lander, E. S., Genetic screens in human cells using the CRISPR- Cas9 system. Science 2014, 343(6166), 80–4. [Google Scholar]
- Ferrara, M.; Haidukowski, M.; Logrieco, A. F.; Leslie, J. F.; Mule, G., A CRISPR-Cas9 System for Genome Editing of Fusarium proliferatum. Sci Rep 2019, 9 (1), 19836. [CrossRef] [PubMed] [Google Scholar]
- Masoudi, M.; Seki, M.; Yazdanparast, R.; Yachie, N.; Aburatani, H., A genome-scale CRISPR/Cas9 knockout screening reveals SH3D21 as a sensitizer for gemcitabine. Sci Rep 2019, 9 (1), 19188. [CrossRef] [PubMed] [Google Scholar]
- Peng, J.; Zhou, Y.; Zhu, S.; Wei, W., High- throughput screens in mammalian cells using the CRISPR-Cas9 system. FEBS J 2015, 282(11), 2089–96. [CrossRef] [PubMed] [Google Scholar]
- Sanjana, N. E.; Shalem, O.; Zhang, F., Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 2014, 11(8), 783–784. [CrossRef] [PubMed] [Google Scholar]
- Koike-Yusa, H.; Li, Y.; Tan, E. P.; Velasco-Herrera Mdel, C.; Yusa, K., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol 2014, 32(3), 267–73. [CrossRef] [PubMed] [Google Scholar]
- Beck, H.; Menzel, T.; Syljuasen, R. G.; Sorensen, C. S., High-throughput siRNA screens using gammaH2AX as marker uncover key regulators of genome integrity in mammalian cells. Cell Cycle 2010, 9(12), 2257–8. [CrossRef] [PubMed] [Google Scholar]
- Nakamura, M.; Okamura, Y.; Iwai, H., Plasmid- based and -free methods using CRISPR/Cas9 system for replacement of targeted genes in Colletotrichum sansevieriae. Sci Rep 2019, 9 (1), 18947. [CrossRef] [PubMed] [Google Scholar]
- Sullivan, T. J.; Dhar, A. K.; Cruz-Flores, R.; Bodnar, A. G., Rapid, CRISPR-Based, Field-Deployable Detection Of White Spot Syndrome Virus In Shrimp. Sci Rep 2019, 9 (1), 19702. [CrossRef] [PubMed] [Google Scholar]
- Zhou, Y.; Zhu, S.; Cai, C.; Yuan, P.; Li, C.; Huang, Y.; Wei, W., High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 2014, 509(7501), 487–91. [PubMed] [Google Scholar]
- Li, W.; Xu, H.; Xiao, T.; Cong, L.; Love, M. I.; Zhang, F.; Irizarry, R. A.; Liu, J. S.; Brown, M.; Liu, X. S., MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol 2014, 15 (12), 554. [CrossRef] [PubMed] [Google Scholar]
- Konig, R.; Chiang, C. Y.; Tu, B. P.; Yan, S. F.; DeJesus, P. D.; Romero, A.; Bergauer, T.; Orth, A.; Krueger, U.; Zhou, Y.; Chanda, S. K., A probability- based approach for the analysis of large-scale RNAi screens. Nat Methods 2007, 4(10), 847–9. [CrossRef] [PubMed] [Google Scholar]
- Luo, B.; Cheung, H. W.; Subramanian, A.; Sharifnia, T.; Okamoto, M.; Yang, X.; Hinkle, G.; Boehm, J. S.; Beroukhim, R.; Weir, B. A.; Mermel, C.; Barbie, D. A.; Awad, T.; Zhou, X.; Nguyen, T.; Piqani, B.; Li, C.; Golub, T. R.; Meyerson, M.; Hacohen, N.; Hahn, W. C.; Lander, E. S.; Sabatini, D. M.; Root, D. E., Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci U S A 2008, 105(51), 20380–5. [CrossRef] [PubMed] [Google Scholar]
- Salanga, M. C.; Brun, N. R.; Francolini, R. D.; Stegeman, J. J.; Goldstone, J. V., CRISPR-Cas9 mutated pregnane x receptor (pxr) retains pregnenolone-induced expression of cyp3a65 in zebrafish (Danio rerio) larvae. Toxicol Sci 2019. [Google Scholar]
- Ali, Z.; Mahfouz, M. M.; Mansoor, S., CRISPR- TSKO: A Tool for Tissue-Specific Genome Editing in Plants. Trends Plant Sci 2019. [Google Scholar]
- Canver, M. C.; Haeussler, M.; Bauer, D. E.; Orkin, S. H.; Sanjana, N. E.; Shalem, O.; Yuan, G. C.; Zhang, F.; Concordet, J. P.; Pinello, L., Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments. Nat Protoc 2018, 13(5), 946–986. [CrossRef] [PubMed] [Google Scholar]
- Bell, C. C.; Magor, G. W.; Gillinder, K. R.; Perkins, A. C., A high-throughput screening strategy for detecting CRISPR-Cas9 induced mutations using next-generation sequencing. BMC Genomics 2014, 15, 1002. [CrossRef] [PubMed] [Google Scholar]
- Wang, T.; Birsoy, K.; Hughes, N. W.; Krupczak, K. M.; Post, Y.; Wei, J. J.; Lander, E. S.; Sabatini, D. M., Identification and characterization of essential genes in the human genome. Science 2015, 350(6264), 1096–101. [Google Scholar]
- Korkmaz, G.; Lopes, R.; Ugalde, A. P.; Nevedomskaya, E.; Han, R.; Myacheva, K.; Zwart, W.; Elkon, R.; Agami, R., Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol 2016, 34(2), 192–8. [CrossRef] [PubMed] [Google Scholar]
- Hart, T.; Chandrashekhar, M.; Aregger, M.; Steinhart, Z.; Brown, K. R.; MacLeod, G.; Mis, M.; Zimmermann, M.; Fradet-Turcotte, A.; Sun, S.; Mero, P.; Dirks, P.; Sidhu, S.; Roth, F. P.; Rissland, O. S.; Durocher, D.; Angers, S.; Moffat, J., High- Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell 2015, 163(6), 1515–26. [CrossRef] [PubMed] [Google Scholar]
- Chen, L.; Alexe, G.; Dharia, N. V.; Ross, L.; Iniguez, A. B.; Conway, A. S.; Wang, E. J.; Veschi, V.; Lam, N.; Qi, J.; Gustafson, W. C.; Nasholm, N.; Vazquez, F.; Weir, B. A.; Cowley, G. S.; Ali, L. D.; Pantel, S.; Jiang, G.; Harrington, W. F.; Lee, Y.; Goodale, A.; Lubonja, R.; Krill-Burger, J. M.; Meyers, R. M.; Tsherniak, A.; Root, D. E.; Bradner, J. E.; Golub, T. R.; Roberts, C. W.; Hahn, W. C.; Weiss, W.A.; Thiele, C. J.; Stegmaier, K., CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J Clin Invest 2018, 128(1), 446–462. [CrossRef] [PubMed] [Google Scholar]
- Song, C. Q.; Li, Y.; Mou, H.; Moore, J.; Park, A.; Pomyen, Y.; Hough, S.; Kennedy, Z.; Fischer, A.; Yin, H.; Anderson, D. G.; Conte, D., Jr.; Zender, L.; Wang, X. W.; Thorgeirsson, S.; Weng, Z.; Xue, W., Genome-Wide CRISPR Screen Identifies Regulators of Mitogen-Activated Protein Kinase as Suppressors of Liver Tumors in Mice. Gastroenterology 2017, 152(5), 1161–1173 e1. [CrossRef] [PubMed] [Google Scholar]
- Atasoy, M. O.; Rohaim, M. A.; Munir, M., Simultaneous Deletion of Virulence Factors and Insertion of Antigens into the Infectious Laryngotracheitis Virus Using NHEJ-CRISPR/Cas9 and Cre-Lox System for Construction of a Stable Vaccine Vector. Vaccines (Basel) 2019, 7 (4). [Google Scholar]
- Valenti, M. T.; Serena, M.; Carbonare, L. D.; Zipeto, D., CRISPR/Cas system: An emerging technology in stem cell research. World J Stem Cells 2019, 11(11), 937–956. [CrossRef] [PubMed] [Google Scholar]
- Heffel, M. G.; Finnigan, G. C., Mathematical modeling of self-contained CRISPR gene drive reversal systems. Sci Rep 2019, 9 (1), 20050. [CrossRef] [PubMed] [Google Scholar]
- McCloskey, A. G.; Miskelly, M. G.; McMullen, C. B. T.; Nesbit, M. A.; Christie, K. A.; Owolabi, A. I.; Flatt, P. R.; McKillop, A. M., CRISPR/Cas9 gene editing demonstrates metabolic importance of GPR55 in the modulation of GIP release and pancreatic beta cell function. Peptides 2020, 170251. [CrossRef] [PubMed] [Google Scholar]
- Arizala, D.; Arif, M., Genome-Wide Analyses Revealed Remarkable Heterogeneity in Pathogenicity Determinants, Antimicrobial Compounds, and CRISPR-Cas Systems of Complex Phytopathogenic Genus Pectobacterium. Pathogens 2019, 8 (4). [Google Scholar]
- Vyas, V. K.; Bernstein, D. A., An Introduction to CRISPR-Mediated Genome Editing in Fungi. J Microbiol Biol Educ 2019, 20 (3). [Google Scholar]
- Gui, S.; Taning, C. N. T.; Wei, D.; Smagghe, G., First report on CRISPR/Cas9-targeted mutagenesis in the Colorado potato beetle, Leptinotarsa decemlineata. J Insect Physiol 2020, 121, 104013. [CrossRef] [PubMed] [Google Scholar]
- Liu, H.; Wang, K.; Jia, Z.; Gong, Q.; Lin, Z.; Du, L.; Pei, X.; Ye, X., Editing TaMTL gene induces haploid plants efficiently by optimized Agrobacterium- mediated CRISPR system in wheat. J Exp Bot 2019. [Google Scholar]
- Ramachandran, A.; Summerville, L.; Learn, B. A.; DeBell, L.; Bailey, S., Processing and integration of functionally oriented prespacers in the E. col CRISPR system depends on bacterial host exonucleases. J Biol Chem 2019. [Google Scholar]
- Nestor, M. W.; Wilson, R. L., Beyond Mendelian Genetics: Anticipatory Biomedical Ethics and Policy Implications for the Use of CRISPR Together with Gene Drive in Humans. J Bioeth Inq 2020. [Google Scholar]
- Duan, W.; Guo, M.; Yi, L.; Liu, Y.; Li, Z.; Ma, Y.; Zhang, G.; Liu, Y.; Bu, H.; Song, X.; Li, C., The deletion of mutant SOD1 via CRISPR/Cas9/sgRNA prolongs survival in an amyotrophic lateral sclerosis mouse model. Gene Ther 2019. [Google Scholar]
- Yuan, N. N.; Cai, C. Z.; Wu, M. Y.; Zhu, Q.; Su, H.; Li, M.; Ren, J.; Tan, J. Q.; Lu, J. H., Canthin-6-One Accelerates Alpha-Synuclein Degradation by Enhancing UPS Activity: Drug Target Identification by CRISPR-Cas9 Whole Genome-Wide Screening Technology. Front Pharmacol 2019, 10, 16. [CrossRef] [PubMed] [Google Scholar]
- Huang, P. W.; Yang, Q.; Zhu, Y. L.; Zhou, J.; Sun, K.; Mei, Y. Z.; Dai, C. C., The construction of CRISPR-Cas9 system for endophytic Phomopsis liquidambaris and its PmkkA-deficient mutant revealing the effect on rice. Fungal Genet Biol 2019, 136, 103301. [CrossRef] [PubMed] [Google Scholar]
- Salazar-Cerezo, S.; Kun, R. S.; de Vries, R. P.; Garrigues, S., CRISPR/Cas9 technology enables the development of the filamentous ascomycete fungus Penicillium subrubescens as a new industrial enzyme producer. Enzyme Microb Technol 2020, 133, 109463. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.