Open Access
Issue |
E3S Web Conf.
Volume 185, 2020
2020 International Conference on Energy, Environment and Bioengineering (ICEEB 2020)
|
|
---|---|---|
Article Number | 04068 | |
Number of page(s) | 5 | |
Section | Chemical Engineering and Food Biotechnology | |
DOI | https://doi.org/10.1051/e3sconf/202018504068 | |
Published online | 01 September 2020 |
- Pulido-Moran M., Moreno-Fernandez J., Ramirez- Tortosa C., et al. (2016) Curcumin and Health. J. Molecules, 21(3): 264–285. [CrossRef] [PubMed] [Google Scholar]
- Kakkar V., Kaur IP. (2011) Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminium induced behavioural, biochemical and histopathological alterations in mice brain. J. 49(11): 2906–2913. [Google Scholar]
- Vera-Ramirez L., Pérez-Lopez P., Varela-Lopez A., et al. (2013) Curcumin and liver disease. J. Biofactors, 39(1): 88–100. [CrossRef] [PubMed] [Google Scholar]
- Yu H., Ke S., Dong L., et al. (2012) Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids. J. Food Chemistry, 131(1): 48–54. [CrossRef] [Google Scholar]
- Yang K., Lin L., Tseng T.Y., et al. (2007) Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa, LC–MS/MS. J. Journal of Chromatography B, 853(1-2): 183–189. [CrossRef] [Google Scholar]
- Li J., Shin G.H., Lee I.W., et al. (2015) Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. J. Food Hydrocolloids, 56: 41–49. [CrossRef] [Google Scholar]
- Sergey S., Ramin E.S., Serdar D., et al. (2017) Solubility profiles, hydration and desolvation of curcumin complexed with γ-cyclodextrin and hydroxypropyl-γ-cyclodextrin. J. Journal of Molecular Structure, 1134: 91–98. [CrossRef] [Google Scholar]
- Ahmed K., Li Y., Mcclements D.J., et al. (2012) Nanoemulsion- and emulsion-based delivery systems for curcumin: Encapsulation and release properties. J. Food Chemistry, 132(2): 799–807. [CrossRef] [Google Scholar]
- Borrin T.R., Georges E. L., Moraes I. C. F., et al. (2016) Curcumin-loaded nanoemulsions produced by the emulsion inversion point (EIP) method: An evaluation of process parameters and physico- chemical stability. J. Journal of Food Engineering, 169: 1–9. [CrossRef] [Google Scholar]
- Li M., Ma Y., Cui J. (2014) Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. J. Lebensmittel- Wissenschaft und-Technologie, 59(1): 49–58. [CrossRef] [Google Scholar]
- Salminen H., Gömmel C., Leuenberger B. H., et al. (2016) Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems. J. Food Chemistry, 190: 928. [CrossRef] [Google Scholar]
- Aditya N. P., Ko S. S. (2015) Solid lipid nanoparticles (SLNs): Delivery vehicles for food bioactives. J. Rsc Advances, 5(39): 30902–30911. [CrossRef] [Google Scholar]
- Kakkar V., Singh S., Singla D., et al. (2011) Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. J. Molecular Nutrition & Food Research, 55(3): 495. [CrossRef] [Google Scholar]
- Luo Y., Teng Z., Li Y., et al. (2015) Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. J. Carbohydrate Polymers, 122: 221–229. [CrossRef] [Google Scholar]
- Ramalingam P., Ko Y. T. (2015) Enhanced Oral Delivery of Curcumin from N -trimethyl Chitosan Surface-Modified Solid Lipid Nanoparticles: Pharmacokinetic and Brain Distribution Evaluations. J. Pharmaceutical research, 32(2): 389. [CrossRef] [Google Scholar]
- Ramalingam P., Sang W. Y., Ko Y. T. (2016) Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. J. Food Research International, 84: 113–119. [CrossRef] [Google Scholar]
- Wang T., Ma X., Lei Y., et al. (2016) Solid lipid nanoparticles coated with cross-linked polymeric double layer for oral delivery of curcumin. J. Colloids & Surfaces B Biointerfaces, 148:1–11. [CrossRef] [Google Scholar]
- Chen X., Zou L., Niu J., Liu W., Peng S., Liu C. (2015) The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes. J. Molecules, 20(8): 14293–14311. [CrossRef] [PubMed] [Google Scholar]
- Karewicz A., Bielska D., Loboda A., et al. (2013) Curcumin-containing liposomes stabilized by thin layers of chitosan derivatives. J. Colloids & Surfaces B Biointerfaces, 109(9): 307–316. [CrossRef] [Google Scholar]
- Peng S., Zou L., Liu W., et al. (2017) Hybrid Liposomes Composed of Amphiphilic Chitosan and Phospholipid: Preparation, Stability and Bioavailability as a Carrier for Curcumin. J. Carbohydrate Polymers, 156: 322–332. [CrossRef] [Google Scholar]
- Takahashi M., Uechi S., Takara K., et al. (2011) Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J. Journal of Agricultural & Food Chemistry, 57(19): 9141–6. [Google Scholar]
- Catalan-Latorre A., Ravaghi M., Manca M.L., et al. (2016) Freeze-dried eudragit-hyaluronan multicompartment liposomes to improve the intestinal bioavailability of curcumin. J. European Journal of Pharmaceutics & Biopharmaceutics, 107: 49–55. [CrossRef] [Google Scholar]
- Moussa Z., Chebl M., Patra D. (2017) Interaction of curcumin with 1,2-dioctadecanoyl-sn-glycero-3- phosphocholine liposomes: Intercalation of rhamnolipids enhances membrane fluidity, permeability and stability of drug molecule. J. Colloids & Surfaces B Biointerfaces, 149: 30–37. [CrossRef] [Google Scholar]
- Zhong L., Bo C., Hu Y., et al. (2009) Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity. J. Food Chemistry, 113(1): 17–20. [CrossRef] [Google Scholar]
- Karathanos V. T., Mourtzinos I., Yannakopoulou K., et al. (2007) Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. J. Food Chemistry, 101(2): 652–658. [CrossRef] [Google Scholar]
- Chun J., Jo Y. J., Bjrapha P., et al. (2015) Antimicrobial effect of α-or β-cyclodextrin complexes with trans-cinnamaldehyde against Staphylococcus aureus and Escherichia coli. J. Drying Technology, 33(3): 377–383. [CrossRef] [Google Scholar]
- Su J., Chen J., Li L., et al. (2012) Formation of β- cyclodextrin inclusion enhances the stability and aqueous solubility of natural borneol. J. Journal of Food Science, 77(6): C658–C664. [CrossRef] [PubMed] [Google Scholar]
- Haiyee Z. A., Saim N., Said M., et al. (2009) Characterization of cyclodextrin complexes with turmeric oleoresin. J. Food Chemistry, 114(114): 459–465. [CrossRef] [Google Scholar]
- Jantarat C., Sirathanarun P., Ratanapongsai S., et al. (2014) Curcumin-hydroxypropyl-β-cyclodextrin inclusion complex preparation methods: effect of common solvent evaporation, freeze drying, and pH shift on solubility and stability of curcumin. J. Tropical Journal of Pharmaceutical Research, 13(8):1215–1223. [CrossRef] [Google Scholar]
- LiN., Wang N., Wu T., et al. (2018) Preparation of curcumin-hydroxypropyl- -cyclodextrin inclusion complex by cosolvency-lyophilization procedure to enhance oral bioavailability of the drug. J Drug Development and Industrial Pharmacy, 44(12): 1–24. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.