Open Access
Issue
E3S Web Conf.
Volume 194, 2020
2020 5th International Conference on Advances in Energy and Environment Research (ICAEER 2020)
Article Number 01032
Number of page(s) 11
Section Energy Engineering and Energy Development and Utilization
DOI https://doi.org/10.1051/e3sconf/202019401032
Published online 15 October 2020
  1. H.P. Garg, S.C. Mullick, A.K. Bhargava, Solar Thermal Energy Storage (D. Reidel Publishing Company: AA Dordrecht, Holland, 1985). [CrossRef] [Google Scholar]
  2. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318-345 (2009). [Google Scholar]
  3. I. Sarbu, C. Sebarchievici, A comprehensive review of thermal energy storage. Sustainability 10, 191 (2018). [Google Scholar]
  4. K. Zhang, J. Du, X. Liu, H. Zhang, Molten salt flow and heat transfer in paddle heat exchangers. Int. J. Heat Technol. 34, 43-50 (2016). [Google Scholar]
  5. Vignarooban, K.; Xu, X.; Arvay, A.; Hsu, K.; Kannan, A.M. Heat transfer fluids for concentrating solar power systems - A review. Appl. Energy 146, 383-396 (2015). [Google Scholar]
  6. J. Ding, X. Wei, Q. Peng, and J. Yang, Medium and High Temperature Heat Transfer and Storage Materials (Science Press: Beijing, China, 2013). (In Chinese) [Google Scholar]
  7. M. Castro, J.L. Presa, J. Díaz, J. Peire, A.F. Baker, S.E. Faas, L.G. Radosevich, A.C. Skinrood, C.R.S. receiver and storage systems evaluation. Sol. Energy 47, 197-207 (1991). [Google Scholar]
  8. R.W. Bradshaw, D.B. Dawson, W. De la Rosa, R. Gilbert, S.H. Goods, M.J. Hale, P. Jacobs, S.a. Jones, G.J. Kolb, J.E. Pacheco, M.R. Prairie, H.E. Reilly, S.K. Showalter, L.L. Vant-Hull, Final Test and Evaluation Results from the Solar Two Project (SAND2002-0120, Sandia National Laboratories: California, USA, 2002). [CrossRef] [Google Scholar]
  9. U. Herrmann, B. Kelly, H. Price, Two-tank molten salt storage for parabolic trough solar power plants. Energy 29, 883-893 (2004). [Google Scholar]
  10. J. Schulte-Fischedick, R. Tamme, U. Herrmann, CFD analysis of the cool down behaviour of molten salt thermal storage systems (ASME: New York, NY, USA, 2008). [Google Scholar]
  11. R. Gabbrielli, C. Zamparelli, Optimal design of a molten salt thermal storage tank for parabolic trough solar power plants. J. Sol. Energy Eng. 131, 0410011-04100110 (2009). [Google Scholar]
  12. F. Zaversky, J. García-Barberena, M. Sánchez, D. Astrain, Transient molten salt two-tank thermal storage modeling for CSP performance simulations. Sol. Energy 93, 294-311 (2013). [Google Scholar]
  13. I. Rodríguez, C.D. Pérez-Segarra, O. Lehmkuhl, A. Oliva, Modular object-oriented methodology for the resolution of molten salt storage tanks for CSP plants. Appl. Energy 109, 402-414 (2013). [Google Scholar]
  14. C. Prieto, L. Miró, G. Peiró, E. Oró, A. Gil, L.F. Cabeza, Temperature distribution and heat losses in molten salts tanks for CSP plants. Sol. Energy 135, 518-526 (2016). [Google Scholar]
  15. C. Prieto, R. Osuna, A.I. Fernández, L.F. Cabeza, Molten salt facilities, lessons learnt at pilot plant scale to guarantee commercial plants; heat losses evaluation and correction. Renew. Energy 94, 175-185 (2016). [Google Scholar]
  16. J. Bonilla, M.M. Rodríguez-García, L. Roca, de la A. Calle, L. Valenzuela, Design and experimental validation of a computational effective dynamice thermal energy storage tank model. Energy 152, 840-857 (2018). [Google Scholar]
  17. Z. Liu, J. Yan, P. Gao, H. Tan, Experimental study on temperature distribution in an ice-making machine multichannel evaporator. Sci. Technol. Built Environ. 25, 69-82 (2019). [Google Scholar]
  18. Z. Wan, J. Wei, M.A. Qaisrani, J. Fang, N. Tu, Evaluation on thermal and mechanical performance of the hot tank in the two-tank molten salt heat storage system. Appl. Therm. Eng. 167, 114775 (2020). [Google Scholar]
  19. C. Prieto, S. Fereres, F.J. Ruiz-Cabañas, A. Rodriguez-Sanchez, C. Montero, Carbonate molten salt solar thermal pilot facility: Plant design, commissioning and operation up to 700 ℃. Renew. Energy 151, 528-541 (2020). [Google Scholar]
  20. A. Bejan, Second-Law Analysis in Heat Transfer and Thermal Design. Adv. Heat Transf. 15, 1-58 (1982). [Google Scholar]
  21. S.B. Pope, Turbulent Flows, 1st ed. (Cambridge University Press & Beijing World Publishing Corporation: Cambridge, UK, 2010). [Google Scholar]
  22. Z. Yang, S.V. Garimella, Molten-salt thermal energy storage in thermoclines under different environmental boundary conditions. Appl. Energy 87, 3322-3329 (2010). [Google Scholar]
  23. C. Xu, X. Li, Z. Wang, Y. He, F. Bai, Effects of solid particle properties on the thermal performance of a packed-bed molten-salt thermocline thermal storage system. Appl. Therm. Eng. 57, 69-80 (2013). [Google Scholar]
  24. ANSYS Fluent, User’s Manual, version 14.5 (Fluent Inc: Canonsburg, Pennsylvania, United States 2012). [Google Scholar]
  25. A. Bejan, S. Lorente, Design with Constructal Theory (Wiley & Sons Inc.: Hoboken, NJ, USA, 2008). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.