Open Access
Issue
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
Article Number 04013
Number of page(s) 7
Section Special Session on Energy Geotechnics
DOI https://doi.org/10.1051/e3sconf/202019504013
Published online 16 October 2020
  1. Bodas Freitas, T.M., Cruz Silva, F., Bourne-Webb, P.J. (2013). The response of energy foundations under thermo-mechanical loading, Proc. of the 18th Intl. Conf. on Soil Mech. and Geot. Eng’g, Paris, 3347-3350 [Google Scholar]
  2. Di Donna, A., Dupray, F., Laloui, L. (2013). Effect of thermo-plasticity of soils on the design of energy piles, EGC2013, Proc. European Geothermal Congress, Pisa, Italy, Paper SG4-03, 10 pages [Google Scholar]
  3. Dupray, F., Laloui, L., Kazangba, A. (2014). Numerical analysis of seasonal heat storage in an energy pile foundation, Computers and Geotechnics, 55(January): 67-77 [Google Scholar]
  4. Saggu, R. and Chakraborty, T. (2014). Thermal analysis of energy piles in sand, Geomechanics and Geoengineering, 10(1): 10-29 [CrossRef] [Google Scholar]
  5. Salciarini, D., Ronchi, F., Cattoni, E., Tamagnini, C. (2015). Thermomechanical effects induced by energy piles operation in a small piled raft, Intl. J. of Geomechanics, 15(2): 1-14 [CrossRef] [Google Scholar]
  6. Wang, W., Regueiro, R.A., McCartney, J.S. (2015). Coupled Axisymmetric Thermo-Poro-Mechanical Finite Element Analysis of Energy Foundation Centrifuge Experiments in Partially Saturated Silt. Geotech. Geol. Eng., 2015, 33(2):373–388 [CrossRef] [Google Scholar]
  7. Di Donna, A. and Laloui, L. (2015). Numerical analysis of the geotechnical behaviour of energy piles, Int. J. Numer. Anal. Meth. Geomech. 2015; 39: 861–888 [CrossRef] [Google Scholar]
  8. Rotta Loria, A.F., Gunawan, A., Shi, C., Laloui, L., Ng, C.W.W. (2015). Numerical modelling of energy piles in saturated sand subjected to thermo-mechanical loads, Geomechanics for Energy and the Environment 1(April): 1–15 [CrossRef] [Google Scholar]
  9. Bourne-Webb, P.J., Bodas Freitas, T.M., Assução, R.M. (2016). Soil-pile thermal interactions in energy foundations, Geotechnique, 66(2): 167-171 [CrossRef] [Google Scholar]
  10. Khosravi, A., Moradshahi, A., McCartney, J.S., Kabiri, M. (2016). Numerical analysis of energy piles under different boundary conditions and thermal loading cycles, Proc. 3rd European Conference on Unsaturated Soils, “E-UNSAT 2016”, 6 pages, https://doi.org/10.1051/e3sconf/20160905005 [Google Scholar]
  11. Tsetoulidis, C., Naskos, A., Georgiadis, K. (2016). Numerical investigation of the mechanical behaviour of single energy piles and energy pile groups, Energy Geotechnics (Wuttke, F., Bauer, S., Sánchez, M. eds), CRC Press, pp. 569-575 [CrossRef] [Google Scholar]
  12. Rotta Loria, A.F. & Laloui, L. (2016). The interaction factor method for energy pile groups, Computers and Geotechnics 80(December): 121–137 [Google Scholar]
  13. Gawecka, K.A., Taborda, D.M.G., Potts, D.M., Cui, W., Zdravkovic, L., Haji Kasri, M.S. (2017). Numerical modelling of thermo-active piles in London Clay, Proc. of the Institution of Civil Engineers, Geotechnical Engineering 170(GE3): 201-219 [Google Scholar]
  14. Salciarini, D., Ronchi, F., Tamagnini, C. (2017). Thermo-hydro-mechanical response of a large piled raft equipped with energy piles: a parametric study, Acta Geotechnica, 12(4): 703-728 [Google Scholar]
  15. Alberdi-Pagola, M., Madsen, S., Lund Jensen, R., Erbs Poulsen, S. (2017). Numerical investigation on the thermo-mechanical behavior of a quadratic cross section pile heat exchanger, IGSHPA Technical/Research Conference and Expo, Denver, 134-143 https://igshpa.org/2017/conference-proceedings/index.html#134, accessed 15 January 2018 [Google Scholar]
  16. Vieira, A., Maranha, J.R. (2017) Thermoplastic analysis of a thermoactive pile in a normally consolidated clay, Int. J. Geomech., 17(1): 04016030 doi: 10.1061/(ASCE)GM.1943-5622.0000666 [CrossRef] [Google Scholar]
  17. Georgiadis K., Skordas D., Kamas I., Comodromos E. (2018) Heating and cooling induced stresses and displacements in heat exchanger piles in sand, Renewable Energy, doi: 10.1016/j.renene.2018.11.078. [Google Scholar]
  18. Rammal D., Mroueh H., Burlon S. (2018) Impact of thermal solicitations on the design of energy piles, Renewable and Sustainable Energy Reviews, 92(Sept.):111-120, doi: 10.1016/j.rser.2018.04.049. [CrossRef] [Google Scholar]
  19. Sani A.K., Singh R.M. (2018) Response of unsaturated soils to heating of geothermal energy pile, Renewable Energy, doi: 10.1016/j.renene.2018.11.032. [Google Scholar]
  20. Adinolfi M, Maiorano RMS, Mauro A, Massarotti N, Aversa S (2018) On the influence of thermal cycles on the yearly performance of an energy pile, Geomechanics for Energy and the Environment, 16(Dec.): 32-44, doi: 10.1016/j.gete.2018.03.004. [CrossRef] [Google Scholar]
  21. Bourne-Webb PJ, Bodas Freitas TM, Freitas Assunção RM (2019) A review of pile-soil interactions in isolated, thermally-activated piles, Computers and Geotechnics 108(April): 61-74, doi: 10.1016/j.compgeo.2018.12.008 [Google Scholar]
  22. Bourne-Webb P.J., Amatya, B., Soga K., Amis, A., Davidson, C., Payne P. (2009). Energy pile test at Lambeth College, London: geotechnical and thermo-dynamic aspects of pile response to heat cycles, Géotechnique 59(3): 237-248 [CrossRef] [Google Scholar]
  23. Zito, M. (2019) Transient analysis of building-pile-soil interactions in thermally-activated foundations, Masters Thesis, Politecnico di Milano [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.