Open Access
Issue |
E3S Web Conf.
Volume 195, 2020
4th European Conference on Unsaturated Soils (E-UNSAT 2020)
|
|
---|---|---|
Article Number | 06007 | |
Number of page(s) | 5 | |
Section | Special Session on the Reuse of Waste Geomaterials | |
DOI | https://doi.org/10.1051/e3sconf/202019506007 | |
Published online | 16 October 2020 |
- B. McGuire, Waking the giant: How a changing climate triggers earthquakes, tsunamis, and volcanoes, Oxford University Press, (2013). [Google Scholar]
- M.S. Imbabi, C. Carrigan, S.J.I.J.O.S.B.E. McKenna, Trends and developments in green cement and concrete technology, 1 (2012) 194-216. [Google Scholar]
- N. Hataf, P. Ghadir, N.J.J.O.C.P. Ranjbar, Investigation of soil stabilization using chitosan biopolymer, 170 (2018) 1493-1500. [Google Scholar]
- W. Pu, C. Shen, B. Wei, Y. Yang, Y. Li, A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field, Journal of Industrial and Engineering Chemistry, 61 (2018) 1-11. [Google Scholar]
- A. Mosallanejad, H. Taghvaei, S.M. Mirsoleimaniazizi, A. Mohammadi, M.R. Rahimpour, Plasma upgrading of 4methylanisole: A novel approach for hydrodeoxygenation of bio oil without using a hydrogen source, Chemical Engineering Research and Design, 121 (2017) 113-124. [CrossRef] [Google Scholar]
- S. Boonlertnirun, C. Boonraung, R.J.J.O.M. Suvanasara, materials, minerals, Application of chitosan in rice production, 18 (2017). [Google Scholar]
- A. Uthairatanakij, J. Teixeira da Silva, K.J.O.S. Obsuwan, Biotechnology, Chitosan for improving orchid production and quality, 1 (2007) 1-5. [Google Scholar]
- H.R. Khatami, B.C.J.J.O.G. O’Kelly, G. Engineering, Improving mechanical properties of sand using biopolymers, 139 (2012) 1402-1406. [Google Scholar]
- I. Chang, G.C.J.A.G. Cho, Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay, 14 (2019) 361-375. [Google Scholar]
- I. Chang, J. Im, A.K. Prasidhi, G.C.J.C. Cho, B. Materials, Effects of Xanthan gum biopolymer on soil strengthening, 74 (2015) 65-72. [Google Scholar]
- N. Latifi, S. Horpibulsuk, C.L. Meehan, M.Z. Abd Majid, M.M. Tahir, E.T.J.J.o.M.i.C.E. Mohamad, Improvement of problematic soils with biopolymer— an environmentally friendly soil stabilizer, 29 (2016) 04016204. [Google Scholar]
- I. Chang, A.K. Prasidhi, J. Im, G.C.J.C. Cho, B. Materials, Soil strengthening using thermo-gelation biopolymers, 77 (2015) 430-438. [Google Scholar]
- I. Chang, J. Im, G.C.J.C.G.J. Cho, Geotechnical engineering behaviors of gellan gum biopolymer treated sand, 53 (2016) 1658-1670. [Google Scholar]
- I. Chang, J. Im, S.-W. Lee, G.C.J.C. Cho, B. Materials, Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying, 143 (2017) 210-221. [Google Scholar]
- I. Younes, M.J.M.D. Rinaudo, Chitin and chitosan preparation from marine sources. Structure, properties and applications, 13 (2015) 1133-1174. [Google Scholar]
- D.J.F.T. Knorr, Recovery and utilization of chitin and chitosan in food processing waste management, (1991). [Google Scholar]
- C. Escudero-Oñate, E.J.C.C.M.F.I.S. Martínez-Francés, Technology, A Review of Chitosan-Based Materials for the Removal of Organic Pollution from Water and Bioaugmentation, (2018) 71. [Google Scholar]
- P.O. Boamah, Y. Huang, M. Hua, Q. Zhang, J. Wu, J. Onumah, L.K. Sam-Amoah, P.O.J.E. Boamah, E. Safety, Sorption of heavy metal ions onto carboxylate chitosan derivatives—a mini-review, 116 (2015) 113-120. [Google Scholar]
- N. Saberi, M. Aghababaei, M. Ostovar, H. Mehrnahad, Simultaneous removal of polycyclic aromatic hydrocarbon and heavy metals from an artificial clayey soil by enhanced electrokinetic method, Journal of Environmental Management, 217 (2018) 897-905. [CrossRef] [PubMed] [Google Scholar]
- E. Kavazanjian Jr, E. Iglesias, I. Karatas, Biopolymer soil stabilization for wind erosion control, in: Proc. 17th Int. Conf. Soil Mech. Geotech. Engng, Alexandria, (2009) 881-884. [Google Scholar]
- A. Alsanad, Novel biopolymer treatment for wind induced soil erosion, Arizona State University, (2011). [Google Scholar]
- R. Aguilar, J. Nakamatsu, E. Ramírez, M. Elgegren, J. Ayarza, S. Kim, M.A. Pando, L.J.C. Ortega-San-Martin, B. Materials, The potential use of chitosan as a biopolymer additive for enhanced mechanical properties and water resistance of earthen construction, 114 (2016) 625-637. [Google Scholar]
- K. Tai, M. Rappolt, L. Mao, Y. Gao, X. Li, F.J.F.H. Yuan, The stabilization and release performances of curcumin-loaded liposomes coated by high and low molecular weight chitosan, (2019) 105355. [Google Scholar]
- S. Lee, I. Chang, Microscopic investigation of interparticle-interaction between sand particles and biopolymer, (2019). [Google Scholar]
- P. Ghadir, N. Ranjbar, Clayey soil stabilization using geopolymer and Portland cement, Construction and Building Materials, 188 (2018) 361-371. [CrossRef] [Google Scholar]
- Y. Yuan, B.M. Chesnutt, W.O. Haggard, J.D.J.M. Bumgardner, Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures, 4 (2011) 1399-1416. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.