Open Access
Issue
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 01007
Number of page(s) 13
Section Energy Storage and Integration of Energy Networks. Technologies
DOI https://doi.org/10.1051/e3sconf/202019701007
Published online 22 October 2020
  1. T. Bossmann, L. Fournié, L. Humberset, P. Khallouf. METIS Study S8 The role and potential of Power-to-X in 2050. (2018). doi:10.2833/459958. [Google Scholar]
  2. V. Pflug, E. Zindel, G. Zimmermann, O.R. Olvera, I. Pyc, C. Trulley. Power-to-X: The crucial business on the way to a carbon-free world. Tech Pap Siemens AG:1–26 (2019) [Google Scholar]
  3. A. Sternberg, A. Bardow. Power-to-What?-Environmental assessment of energy storage systems. Energy Environ Sci 8:389–400 (2015) doi:10.1039/c4ee03051f. [CrossRef] [Google Scholar]
  4. Power-to-X solutions. Innov Landsc a Renewable-Powered Futur Solut to Integr Var Renewables 1–8 (2019) https://irena.org/-/media/Files/IRENA/Agency/Topics/Innovation-andTechnology/IRENA_Landscape_Solution_11.pdf?la=en&hash=2BE79AC597ED18A96E5415942E0B93232F82FD85 (accessed November 9, 2019). [Google Scholar]
  5. A. Bloess, W.P. Schill, A. Zerrahn. Power-to-heat for renewable energy integration: A review of technologies, modeling approaches, and flexibility potentials. Appl Energy 212:1611–26 (2018) doi:10.1016/j.apenergy.2017.12.073. [CrossRef] [Google Scholar]
  6. P. Schmidt, C. Batteiger, A. Roth, W. Weindorf. Power-to-Liquids as Renewable Fuel Option for Aviation: A Review 127–40 (2018) doi:10.1002/cite.201700129. [Google Scholar]
  7. S. Schemme, R. Can, R. Peters, D. Stolten. Power-to-fuel as a key to sustainable transport systems – An analysis of diesel fuels produced from CO2 and renewable electricity. Fuel 205:198–221 (2017) doi:10.1016/j.fuel.2017.05.061. [CrossRef] [Google Scholar]
  8. C. Bergins, K.C. Tran, S. Wu, E. Kakaras, T. Buddenberg, Ó Sigurbjörnsson, et al. The Challenge of Energy Storage in Europe: Focus on Power to Fuel. J Energy Resour Technol 138:042002 (2016) doi:10.1115/1.4032544. [CrossRef] [Google Scholar]
  9. C. Bassano, P. Deiana, L. Lietti, CG. Visconti. P2G movable modular plant operation on synthetic methane production from CO2 and hydrogen from renewables sources. Fuel 253:1071–9 (2019) doi:10.1016/j.fuel.2019.05.074. [CrossRef] [Google Scholar]
  10. B.R. de Vasconcelos, J.M. Lavoie. Recent advances in power-to-X technology for the production of fuels and chemicals. Front Chem 7:1–24 (2019) doi:10.3389/fchem.2019.00392. [CrossRef] [PubMed] [Google Scholar]
  11. M. Bertau, H. Offermanns, L. Plass, F. Schmidt. Methanol: The Basic Chemical and Energy Feedstock of the Future. 2014. doi:10.1007/978-3-642-39709-7. [CrossRef] [Google Scholar]
  12. J.A. Baak, A.K. Pozarlik, M.J. Arentsen, G. Brem. Techno-economic study of a zeroemission methanol based energy storage system. Energy Convers Manag 182:530–45 (2019) doi:10.1016/j.enconman.2018.12.015. [CrossRef] [Google Scholar]
  13. I. Ganesh. Conversion of carbon dioxide into methanol A potential liquid fuel: Fundamental challenges and opportunities (a review). Renew Sustain Energy Rev 31:221–57 (2014) doi:10.1016/j.rser.2013.11.045. [CrossRef] [Google Scholar]
  14. F.G. Albrecht, D.H. Konig, R.U. Dietrich. The potential of using power-to-liquid plants for power storage purposes. Int Conf Eur Energy Mark EEM 2016;(2016-July). doi:10.1109/EEM.2016.7521203. [Google Scholar]
  15. M. Fasihi, D. Bogdanov, C. Breyer. Techno-Economic Assessment of Power-toLiquids (PtL) Fuels Production and Global Trading Based on Hybrid PV-Wind Power Plants. Energy Procedia 99:243–68 (2016) doi:10.1016/j.egypro.2016.10.115. [CrossRef] [Google Scholar]
  16. S. Michailos, S. McCord, V. Sick, G. Stokes, P. Styring. Dimethyl ether synthesis via captured CO2 hydrogenation within the power to liquids concept: A techno-economic assessment. Energy Convers Manag 184:262–76 (2019) doi:10.1016/j.enconman.2019.01.046. [CrossRef] [Google Scholar]
  17. A. Hankin, N. Shah. Process exploration and assessment for the production of methanol and dimethyl ether from carbon dioxide and water. Sustain Energy Fuels 1541–56 (2017) doi:10.1039/C7SE00206H. [CrossRef] [Google Scholar]
  18. A. Crivellari, V. Cozzani, I. Dincer. Design and energy analyses of alternative methanol production processes driven by hybrid renewable power at the offshore Thebaud platform. Energy Convers Manag 187:148–66 (2019) doi:10.1016/j.enconman.2019.03.017. [CrossRef] [Google Scholar]
  19. G.A. Olah, A. Goeppert, G.K.S Prakash. Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–98 (2009) doi:10.1021/jo801260f. [CrossRef] [PubMed] [Google Scholar]
  20. E. Catizzone, G. Bonura, M. Migliori, F. Frusteri, G. Giordano. CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives 1–31 (2017) doi:10.3390/molecules23010031. [Google Scholar]
  21. Dimethyl Ether (DME) | METHANOL INSTITUTE n.d. https://www.methanol.org/dimethyl-ether-dme/ (accessed April 16, 2020). [Google Scholar]
  22. G.A. Olah, A. Goeppert, G.K.S. Prakash. Beyond Oil and Gas: The Methanol Economy. 2nd ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; (2009) doi:10.1002/9783527627806. [CrossRef] [Google Scholar]
  23. CRI Carbon Recycling International n.d. https://www.carbonrecycling.is/home (accessed December 18, 2019). [Google Scholar]
  24. K. Atsonios, K.D. Panopoulos, E. Kakaras. Investigation of technical and economic aspects for methanol production through CO2 hydrogenation. Int J Hydrogen Energy 41:2202–14 (2016) doi:10.1016/j.ijhydene.2015.12.074. [CrossRef] [Google Scholar]
  25. M. Héder. From NASA to EU: The evolution of the TRL scale in Public Sector Innovation. Innov J 22:1–23 (2017). [Google Scholar]
  26. FLEXCHX. Review of electrolysis technologies and their integration alternatives FLEXCHX Flexible combined production of power, heat and transport fuels from renewable energy sources 2018:35. [Google Scholar]
  27. Ursua A, Gandia LM, Sanchis P. Hydrogen Production From Water Electrolysis: Current Status and Future Trends. Proc IEEE 100:410–26 (2012) doi:10.1109/JPROC.2011.2156750. [CrossRef] [Google Scholar]
  28. A. Ursua, P. Sanchis. Static-dynamic modelling of the electrical behaviour of a commercial advanced alkaline water electrolyser. Int J Hydrogen Energy 37:18598–614 (2012) doi:10.1016/j.ijhydene.2012.09.125. [CrossRef] [Google Scholar]
  29. M. Ni, M.K.H. Leung, D.Y.C Leung. An electrochemical model of a solid oxide steam electrolyzer for hydrogen production. Chem Eng Technol 29:636–42 (2006) doi:10.1002/ceat.200500378. [CrossRef] [Google Scholar]
  30. M. Ni, M.K.H. Leung, D.Y.C. Leung. Parametric study of solid oxide steam electrolyzer for hydrogen production. Int J Hydrogen Energy 32:2305–13 (2007) doi:10.1016/j.ijhydene.2007.03.001. [CrossRef] [Google Scholar]
  31. F. Lonis. Design, modelling, evaluation and comparison of energy systems for the production and use of renewable methanol using recycled CO2. PhD thesis. University of Cagliari, 2020. [Google Scholar]
  32. F. Lonis, V. Tola, G. Cau. Renewable methanol production and use through reversible solid oxide cells and recycled CO2 hydrogenation. Fuel 246:500–15 (2019) doi:10.1016/j.fuel.2019.02.108. [CrossRef] [Google Scholar]
  33. L. Barelli, G. Bidini, G. Cinti. Airflow Management in Solid Oxide Electrolyzer (SOE) Operation: Performance Analysis. Chem Engineering 1:13 (2017) doi:10.3390/chemengineering1020013. [Google Scholar]
  34. É.S. Van-Dal, C. Bouallou. Design and simulation of a methanol production plant from CO2 hydrogenation. J Clean Prod 57:38–45 (2013) doi:10.1016/j.jclepro.2013.06.008. [CrossRef] [Google Scholar]
  35. K.I.M. Al-Malah. Aspen Plus®. Hoboken, NJ, USA: John Wiley & Sons, Inc.; (2016). doi:10.1002/9781119293644. [CrossRef] [Google Scholar]
  36. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few. Future cost and performance of water electrolysis: An expert elicitation study. Int J Hydrogen Energy 42:30470–92 2017 doi:10.1016/j.ijhydene.(2017).10.045. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.