Open Access
Issue
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 04001
Number of page(s) 10
Section Air Conditioning, Refrigeration and IEQ Systems
DOI https://doi.org/10.1051/e3sconf/202019704001
Published online 22 October 2020
  1. N.E. Klepeis, W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer, J.V. Behar, S.C. Hern, W.H. Engelmann. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 11, (2001). [CrossRef] [PubMed] [Google Scholar]
  2. M. Arif, M. Katafygiotou, A. Mazroei, A. Kaushik, E. Elsarrag, E. Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. Int. J. Sustainable Built Environ. 5, 1, (2016). [CrossRef] [Google Scholar]
  3. L. Yang, H. Yan, J.C. Lam. Thermal comfort and building energy consumption implications–a review. Appl. Energy 115 (2014). [CrossRef] [Google Scholar]
  4. P.O. Fanger, P. O. Thermal comfort: analysis and applications in environmental engineering. New York: McGraw-Hill (1972). [Google Scholar]
  5. R. De Dear, G.S. Brager G. S.. Developing an adaptive model of thermal comfort and preference ASHRAE Trans. 104 (1998). [Google Scholar]
  6. J.F. Nicol, M.A. Humphreys, M. A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build., 34 6 (2002). [Google Scholar]
  7. S. Lee, P. Karava, A. Tzempelikos, I. Bilionis. Inference of thermal preference profiles for personalized thermal environments with actual building occupants. Build. Environ., 148 (2019). [PubMed] [Google Scholar]
  8. S. Liu, S. Schiavon, H.P. Das, M. Jin, C.J. Spanos. Personal thermal comfort models with wearable sensors. Build. Environ., 162 (2019). [Google Scholar]
  9. F. Salamone, L. Belussi, C. Currò, L. Danza, M. Ghellere, G. Guazzi, B. Lenzi, V. Megale, I. Meroni, Application of IoT and Machine Learning techniques for the assessment of thermal comfort perception., Energy Proc., 148 (2018). [CrossRef] [Google Scholar]
  10. S. Niu, W. Pan, Y. Zhao, Y. (2015). A virtual reality supported approach to occupancy engagement in building energy design for closing the energy performance gap. Procedia Eng., 118 (2015). [Google Scholar]
  11. M. Hosokawa, T. Fukuda, N. Yabuki, T. Michikawa, A. Motamedi. Integrating CFD and VR for indoor thermal environment design feedback. Proceedings of the 21st International Conference of the Association for Computer-Aided Architectural Design Research in Asia (2016). [Google Scholar]
  12. B.R.M. Kingma, M. Schweiker, A. Wagner, W.D. van Marken Lichtenbelt, Exploring internal body heat balance to understand thermal sensation, Build. Res. Inf., 45 (2017). [Google Scholar]
  13. Standard 55 – Thermal Environmental Conditions for Human Occupancy, (n.d.). https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy (accessed May 27, 2020) [Google Scholar]
  14. F. Salamone, A. Bellazzi, L. Belussi, G. Damato, L. Danza, F. Dell’Aquila, M. Ghellere, V. Megale, I. Meroni, W. Vitaletti. Evaluation of the Visual Stimuli on Personal Thermal Comfort Perception in Real and Virtual Environments Using Machine Learning Approaches. Sensors, 20 6 (2020). [Google Scholar]
  15. OpenFOAM ®-Official Home of The Open Source Computational Fluid Dynamics (CFD) Toolbox. Available online: https://www.openfoam.com/ (accessed May 27, 2020) [Google Scholar]
  16. Roudsari, M.S.; Pak, M. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In Proceedings of the 13 th Conference of International Building Performance Simulation Association, Chambery, France, 26–28 August 2013. [Google Scholar]
  17. Threshold relative humidity range in winter period. Available online: https://www.centralhtg.com/blog/managing-home-humidity-for-maximum-comfort (accessed May 27, 2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.