Open Access
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 07010
Number of page(s) 10
Section Hydraulics and Pneumatics
Published online 22 October 2020
  1. M. Vukovic, R. Leifeld, H. Murrenhoff, Reducing Fuel Consumption in Hydraulic Excavators—A Comprehensive Analysis. 2017 Energies 10.5, p. 687. doi: 10.3390/en10050687. [Google Scholar]
  2. M. Inderelst, F.D. Weidner, C. Stammen, Quantification of Energy Saving Influencers. 21t Excavator Hydraulic System – A Holistic Investigation? 2018, 11th International Fluid Power Conference 19th 21th March [Google Scholar]
  3. Joo, C., Stangl, M. Application of Power Regenerative Boom system to excavator. 2016 In Proceedings of the 10. IFK: International Fluid Power Conference, Dresden, Germany, 8-10 March; Volume 3, pp. 175–184; [Google Scholar]
  4. Li, J.; Zhao, J.; Zhang, X. A Novel Energy Recovery System Integrating Flywheel and Flow Regeneration for a Hydraulic Excavator Boom System. Energies 2020, 13, 315. DOI: 10.3390/en13020315. [CrossRef] [Google Scholar]
  5. Guan, C. & Xu, X. & Lin, X. & Wang, S.-H. Recovering system of swing braking energy in hydraulic excavator. Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science) 2012. 46. 142-149. DOI: 10.3785/j.issn.1008-973X.2012.01.23. [Google Scholar]
  6. P. Casoli, A. Gambarotta, N. Pompini, L. Riccò. Development and application of co-simulation and control-oriented modeling in the improvement of performance and energy saving of mobile machinery. Energy Procedia, Volume 45, 2014, Pages 849–858. Elsevier. doi:10.1016/j.egypro.2014.01.090. [CrossRef] [Google Scholar]
  7. P. Casoli, A. Anthony, L. Riccò. Modeling of an Excavator System – Load sensing flow sharing valve model. SAE 2012 Commercial Vehicle Engineering Congress, Rosemont, Illinois, USA, 13-14 September 2012. doi:10.4271/2012-01-2042. [Google Scholar]
  8. P. Casoli, A. Gambarotta N. Pompini, L. Riccò. Coupling excavator hydraulic system and internal combustion engine models for the Real-Time simulation. Control Engineering Practice 2015, pp. 26-37. DOI: 10.1016/j.conengprac.2015.04.003. [Google Scholar]
  9. P. Casoli, N. Pompini, L. Riccò. Simulation of an Excavator Hydraulic System Using Nonlinear Mathematical Models. Strojniški vestnik Journal of Mechanical Engineering 61 (2015)10, 583-593. doi:10.5545/sv-jme.2015.2570 [CrossRef] [Google Scholar]
  10. Bedotti, A., Campanini, F., Pastori, M., Riccò L., Casoli, P. Energy saving solutions for a hydraulic excavator. Energy Procedia 2017, 126, pp. 1099-1106 DOI: 10.1016/j.egypro.2017.08.255 [CrossRef] [Google Scholar]
  11. Paolo Casoli, Luca Riccò, Federico Campanini, Andrea Bedotti. Hydraulic Hybrid Excavator— Mathematical Model Validation and Energy Analysis, Energies 2016, 9, 1002; doi:10.3390/en9121002 [CrossRef] [Google Scholar]
  12. P. Casoli, A. Anthony, M. Rigosi. Modeling of an Excavator System – Semi empirical hydraulic pump model” SAE International Journal of Commercial Vehicles October 2011 vol. 4, Issue 1, pp. 242-255. ISSN: 1946-391X. doi:10.4271/2011-01-2278. [CrossRef] [Google Scholar]
  13. P. Casoli, L. Riccò, F. Campanini, A. Lettini, C. Dolcin. Mathematical model of an hydraulic excavator for fuel consumption predictions” Proceedings of the ASME/BATH Symposium on Fluid Power & Motion Control FPMC2015 October 12-14, 2015, Chicago, Illinois, United States ISBN: 978-0-79185723-6. Paper No. FPMC2015-9566, pp. V001T01A035; 10 pages. doi:10.1115/FPMC2015-9566 [Google Scholar]
  14. Rundo M. Models for Flow Rate Simulation in Gear Pumps: A Review, Energies 2017 10(9), 1261, doi:10.3390/en10091261. [CrossRef] [Google Scholar]
  15. Zardin, B.; Natali, E.; Borghi, M. Evaluation of the Hydro—Mechanical Efficiency of External Gear Pumps. Energies 2019, 12, 2468. [CrossRef] [Google Scholar]
  16. E. Frosina, D. Buono, A. Senatore, I. J. Costin. A Simulation Methodology Applied on Hydraulic Valves for High Fluxes. International Review on Modelling and Simulations 2016 9(3): 217, doi: 10.15866/iremos.v9i3.9612. [CrossRef] [Google Scholar]
  17. E. Frosina, A. Senatore, M. Rigosi. Study of a High-Pressure External Gear Pump with a Computational Fluid Dynamic Modeling Approach. Energies 2017, 10(8), pp. 1113 [CrossRef] [Google Scholar]
  18. Altare G., Rundo M. CFD Analysis of gerotor lubricating pumps at high speed: geometric features influencing the filling capability. Proceedings of the ASME/BATH 2015 Symposium on Fluid Power and Motion Control (FPMC), Oct. 12-14, 2015, Chicago, IL, USA. Paper no. FPMC2015-9539. DOI: 10.1115/FPMC2015-9539. [Google Scholar]
  19. P. Casoli, A. Anthony. Gray box modeling of an excavator’s variable displacement hydraulic pump for fast simulation of excavation cycles. Control Engineering Practice 21 2013 pp. 483-494. Elsevier Ltd. doi: 10.1016/j.conengprac.2012.11.011. [CrossRef] [Google Scholar]
  20. Zardin, B., Borghi, M., Cillo, G., Rinaldini, C.A., Mattarelli, E., Design Of Two-Stage On/Off Cartridge Valves For Mobile Applications, Energy Procedia, Volume 126, 2017, Pages 1123-1130, ISSN 18766102, [CrossRef] [Google Scholar]
  21. Padovani, D., Rundo, M., Altare, G. The Working Hydraulics of Valve-Controlled Mobile Machines: Classification and Review. J. Dyn. Sys., Meas., Control 2020, 142(7), 070801. doi:10.1115/1.4046334. [CrossRef] [Google Scholar]
  22. J. Rosero, J. Ortega, E. Aldabas and L. Romeral. Moving Towards a more Electric Aircraft. IEEE A&E System Magazine, 2007 pp. 3-9, March. DOI: 10.1109/MAES.2007.340500 [Google Scholar]
  23. M. Schneider, O. Koch, and J. Weber. Green Wheel Loader – improving fuel economy through energy efficient drive and control concepts. 10th Int. Fluid Power Conf., Dresden, 2016. [Google Scholar]
  24. S. Smith, J. Irving and J. Irving. Electro Hydrostatic Actuators for Control of Undersea Vehicles. Joint Undersea Warfare Technology Fall Conference, 2006 Groton, Connecticut. [Google Scholar]
  25. Schmidt, L., Ketelsen, S., Brask, M.H., Mortensen, K.A. A Class of Energy Efficient Self-Contained Electro-Hydraulic Drives with Self-Locking Capability. Energies 2019, 12, 1866, doi:10.3390/en12101866. [CrossRef] [Google Scholar]
  26. Padovani D., Ketelsen S., Hagen D., Schmidt L. A Self-Contained Electro-Hydraulic Cylinder with Passive Load-Holding Capability. Energies 2019, 12, 292 doi:10.3390/en12020292. [CrossRef] [Google Scholar]
  27. Ketelsen S., Padovani D., Andersen T.O., Ebbesen M.K., Schmidt L. Classification and Review of Pump-Controlled Differential Cylinder Drives. Energies 2019, 12. 1293. doi:10.3390/en12071293 [CrossRef] [Google Scholar]
  28. Casoli P., Vacca A., Anthony A., Berta G.L. Numerical and Experimental Analysis of the Hydraulic Circuit for the Rear Hitch Control in Agricultural Tractors. 7th International Fluid Power Conference, (pp. 51-63, vol. 1) Aachen, 22-24/03 2010, ISBN 978-3-940565-90-7 [Google Scholar]
  29. Pintore F, Borghi M, Morselli R, Benevelli A, Zardin B, Belluzzi F. Modelling and Simulation of the Hydraulic Circuit of an Agricultural Tractor. ASME. Fluid Power Systems Technology 2014, 8th FPNI Ph.D Symposium on Fluid Power:V001T04A004. doi:10.1115/FPNI2014-7848. Conference, (pp. 5163, vol. 1) Aachen, 22-24/03 2010, ISBN 978-3-940565-90-7 [Google Scholar]
  30. Borghi, M., Zardin, B., Pintore, F., Belluzzi, F. Energy Savings in the Hydraulic Circuit of Agricultural Tractors, Energy Procedia, Volume 45, 2014, Pages 352-361, ISSN 1876-6102, [CrossRef] [Google Scholar]
  31. Panetta, G., Mancarella, F., Borghi, M., Zardin, B., and Pintore, F., Dynamic Modelling of an Off-Road Vehicle for the Design of a Semi-Active, Hydropneumatic Spring-Damper System. Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 4B: Dynamics, Vibration, and Control. Houston, Texas, USA. November 13-19, 2015. V04BT04A006. ASME. [Google Scholar]
  32. Zardin, B.; Borghi, M.; Gherardini, F.; Zanasi, N. Modelling and Simulation of a Hydrostatic Steering System for Agricultural Tractors. Energies 2018, 11, 230. [CrossRef] [Google Scholar]
  33. M. Borghi, B. Zardin, F. Belluzzi, F. Pintore, Energy Savings in the Hydraulic Circuit of Agricultural Tractors, Energy Procedia 45 (2014), pp. 352–361. [CrossRef] [Google Scholar]
  34. Patent pending US2020124194 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.