Open Access
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 08021
Number of page(s) 10
Section Environmental Sustainability and Renewable Energy Sources
Published online 22 October 2020
  1. F. Pierobon, M. Zanetti, S. Grigolato, A. Sgarbossa, T. Anfodillo, R. Cavalli, Life cycle environmental impact of firewood production – a case study in Italy, Appl. Ener. 150, 185–195 (2015) [CrossRef] [Google Scholar]
  2. [Google Scholar]
  3. K. Mi Hyung and S. Han Byul, Analysis of the global warming potential for wood waste recycling systems, Journal of Cleaner Production 69, 199–207 (2014) [CrossRef] [Google Scholar]
  4. E. Ratajczak, G. Bidzińska, A. Szostak, M. Herbeć, Resources of post-consumer wood waste originating from the construction sector in Poland, Resouces, Conservation and Recycling 97, 93–99 (2015) [CrossRef] [Google Scholar]
  5. E. Cespirini, G. Resente, V. Causin, T. Urso, R. Cavalli, M. Zanetti, Energy recovery of glued wood waste – A review, Fuel 262, 116520 (2020) [CrossRef] [Google Scholar]
  6. M. U. Hossain and C. S. Poon, Comparative LCA of wood waste management strategies generated from building construction activities, Journal of Cleaner Production 177, 387–397 (2018) [CrossRef] [Google Scholar]
  7. U. Berardi and G. Iannace, Acoustic characterization of natural fibers for sound absorption applications, Building and Environment 92(II), 840-852 (2015) [CrossRef] [Google Scholar]
  8. Z. Pásztory, I. Ronyecz Mohácsiné, Z. Börcsök, Investigation of thermal insulation panels made of black locust tree bark, Construction and Building Materials 147, 733–735 (2017) [CrossRef] [Google Scholar]
  9. Y. Casas-Ledon, K. Daza Salgado, J. Cea, L.E. Arteaga Perez, C. Fuentealba, Life cycle assessment of innovative insulation panels based on eucalyptus bark fibers, Journal of Cleaner Production 249, 119356 (2020) [CrossRef] [Google Scholar]
  10. R. Muthuraj, C. Lacoste, P. Lacroix, A. Bergeret, Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation, Industrial Crops & Products 135, 238–245 (2019) [CrossRef] [Google Scholar]
  11. J.S. Wang, C. Demartino, Y. Xiao, Y.Y. Li, Thermal insulation performance of bambooand wood-based shear walls in light-frame buildings, Energy & Buildings 168, 167–179 (2018) [CrossRef] [Google Scholar]
  12. FAIL Società Cooperativa, see [Google Scholar]
  13. C. Buratti, I. Costarelli, F. Cotana, L. Crisostomi and F. Fantozzi, “The Biomass Research Center Laboratory for Biomass Characterization”, in proceeding of the 14th European Biomass Conference and Exhibition (Paris, 2005), Biomass for Energy, Industry and Climate Protection, pp. 1855-1858 [Google Scholar]
  14. UNI EN ISO 18134-1:2015. Solid biofuels Determination of moisture content Oven dry method Part 1: Total moisture Reference method [Google Scholar]
  15. UNI EN ISO 18122:2016. Solid biofuels Determination of ash content [Google Scholar]
  16. UNI EN ISO 18123:2016. Solid biofuels Determination of the content of volatile matter [Google Scholar]
  17. UNI EN ISO 16948:2015. Solid biofuels Determination of total content of carbon, hydrogen and nitrogen [Google Scholar]
  18. UNI EN ISO 18125:2018. Solid biofuels Determination of calorific value [Google Scholar]
  19. [Google Scholar]
  20. C. Buratti, E. Belloni, L. Lunghi, M. Barbanera, Thermal Conductivity Measurements By Means of a new ‘Small Hot-Box’ Apparatus: Manufacturing, Calibration and Preliminary Experimental Tests on Different Materials, International journal of thermophysics 2016, 37–47 [Google Scholar]
  21. C. Buratti, E. Belloni, L. Lunghi, A. Borri, G. Castori, M. Corradi, Mechanical characterization and thermal conductivity measurements using of a new ’small hot-box’ apparatus: innovative insulating reinforced coatings analysis, Journal of Building Engineering 7, 63–70 (2016) [CrossRef] [Google Scholar]
  22. UNI CEI ENV 13005, 2000. Guida all’espressione dell’incertezza di misura (in Italian) [Google Scholar]
  23. ISO 10534-2. Acoustics – Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes – Part 2: Transfer-Function Method, 2015 [Google Scholar]
  24. P. Ricciardi, F. Torchia, E. Belloni, E. Lascaro, C. Buratti, Environmental characterisation of coffee chaff, a new recycled material for building applications, Construction and Building Materials 147, 185–193 (2017) [CrossRef] [Google Scholar]
  25. C. Buratti, F. Merli, E. Moretti, Aerogel – based materials for building applications: influence of granule size on thermal and acoustic performance, Energy and Buildings 152, 472–482 (2017) [CrossRef] [Google Scholar]
  26. ISO 10456:2007. Building Materials and Products Hygrothermal Properties Tabulated Design Values and Procedures for Determining Declared and Design Thermal Values, ISO, Geneva, Switzerland [Google Scholar]
  27. Z. Pásztory and I. Ronyecz, The Thermal Insulation Capacity of Tree Bark, Acta Silv. Lign. Hung. 9, 111–117 (2013) [CrossRef] [Google Scholar]
  28. [Google Scholar]
  29. [Google Scholar]
  30. [Google Scholar]
  31. [Google Scholar]
  32. P. Ricciardi, E. Belloni, F. Cotana, Innovative panels with recycled materials: thermal and acoustic performance and Life Cycle Assestment, Appl. Energ. 134, 150–162 (2014) [CrossRef] [Google Scholar]
  33. ASTM C423-09A:2009. Standard Test Method for Sound Absorption and SoundAbsorption Coefficients by the Reverberation Room Method, ASTMInternational, West Conshohocken, PA, USA [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.