Open Access
Issue
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 09002
Number of page(s) 10
Section Energy Polygeneration Technologies and Systems
DOI https://doi.org/10.1051/e3sconf/202019709002
Published online 22 October 2020
  1. “The Role of Gas in Today’s Energy Transitions – Analysis IEA.” [Online]. Available: https://www.iea.org/reports/the-role-of-gas-in-todays-energy-transitions. [Accessed: 10-May-2020]. [Google Scholar]
  2. I. G. Union, “The World LNG Report,” Barcelona, 2020. [Google Scholar]
  3. C. Dispenza, G. Dispenza, V. La Rocca, and G. Panno, “Exergy recovery during LNG regasification: Electric energy production Part one,” Appl. Therm. Eng., vol. 29, no. 2–3, pp. 380–387, 2009, doi: 10.1016/j.applthermaleng.2008.03.036. [CrossRef] [Google Scholar]
  4. G. Tagliafico, F. Valsuani, and L. A. Tagliafico, “Liquefied natural gas submerged combustion vaporization facilities: process integration with power conversion units,” Int. J. Energy Res., vol. 37, no. 1, pp. 80–92, Jan. 2013, doi: 10.1002/er.1937. [CrossRef] [Google Scholar]
  5. M. F. M. Fahmy, H. I. Nabih, and T. A. El-Rasoul, “Optimization and comparative analysis of LNG regasification processes,” Energy, vol. 91, pp. 371–385, 2015, doi: 10.1016/j.energy.2015.08.035. [CrossRef] [Google Scholar]
  6. S. Li, B. Wang, J. Dong, and Y. Jiang, “Thermodynamic analysis on the process of regasification of LNG and its application in the cold warehouse,” Therm. Sci. Eng. Prog., vol. 4, pp. 1–10, Dec. 2017, doi: 10.1016/j.tsep.2017.08.001. [CrossRef] [Google Scholar]
  7. B. B. Kanbur, L. Xiang, S. Dubey, F. H. Choo, and F. Duan, “Cold utilization systems of LNG: A review,” Renewable and Sustainable Energy Reviews, vol. 79. Elsevier Ltd, pp. 1171–1188, 2017, doi: 10.1016/j.rser.2017.05.161. [CrossRef] [Google Scholar]
  8. A. Atienza-Márquez, J. C. Bruno, and A. Coronas, “Cold recovery from LNGregasification for polygeneration applications,” Appl. Therm. Eng., vol. 132, pp. 463–478, Mar. 2018, doi: 10.1016/j.applthermaleng.2017.12.073. [CrossRef] [Google Scholar]
  9. I. Lee, J. Park, F. You, and I. Moon, “A novel cryogenic energy storage system with LNG direct expansion regasification: Design, energy optimization, and exergy analysis,” Energy, vol. 173, pp. 691–705, Apr. 2019, doi: 10.1016/j.energy.2019.02.047. [CrossRef] [Google Scholar]
  10. A. Atienza-Márquez, J. C. Bruno, A. Akisawa, and A. Coronas, “Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification,” Energy, vol. 183, pp. 448–461, Sep. 2019, doi: 10.1016/j.energy.2019.06.153. [CrossRef] [Google Scholar]
  11. T. He, Z. R. Chong, J. Zheng, Y. Ju, and P. Linga, “LNG cold energy utilization: Prospects and challenges,” Energy, vol. 170, pp. 557–568, Mar. 2019, doi: 10.1016/j.energy.2018.12.170. [CrossRef] [Google Scholar]
  12. D. S. Ayoua and V. Eveloy, “Sustainable multi-generation of district cooling, electricity, and regasified LNG for cooling-dominated regions,” Sustain. Cities Soc., p. 102219, May 2020, doi: 10.1016/j.scs.2020.102219. [CrossRef] [Google Scholar]
  13. “Emission Control Areas (ECAs) designated under regulation 13 of MARPOL Annex VI (NOx emission control).” [Online]. Available: http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/Emission-Control-Areas-(ECAs)-designated-under-regulation-13-ofMARPOL-Annex-VI-(NOx-emission-control).aspx. [Accessed: 11-May-2020]. [Google Scholar]
  14. European Parliament, “Directive (EU) 2018/410 of the European Parliament and of the Council of 14 March 2018 amending Directive 2003/87/EC to enhance costeffective emission reductions and low-carbon investments, and Decision (EU) 2015/1814,” Off. J. Eur. Union, vol. L76, October 2003, pp. 3–27, 2018. [Google Scholar]
  15. B. Y. Yoo, “Economic assessment of liquefied natural gas (LNG) as a marine fuel for CO2 carriers compared to marine gas oil (MGO),” Energy, vol. 121, pp. 772–780, 2017, doi: 10.1016/j.energy.2017.01.061. [CrossRef] [Google Scholar]
  16. J. Eise Fokkema, P. Buijs, and I. F. A. Vis, “An investment appraisal method to compare LNG-fueled and conventional vessels,” Transp. Res. Part D Transp. Environ., vol. 56, pp. 229–240, Oct. 2017, doi: 10.1016/j.trd.2017.07.021. [CrossRef] [Google Scholar]
  17. T. Iannaccone, G. Landucci, A. Tugnoli, E. Salzano, and V. Cozzani, “Sustainability of cruise ship fuel systems: Comparison among LNG and diesel technologies,” J. Clean. Prod., vol. 260, Jul. 2020, doi: 10.1016/j.jclepro.2020.121069. [CrossRef] [Google Scholar]
  18. P. Lauriola, “Il progetto,” 2009. [Online]. Available: http://interreg-maritime.eu/web/signal. [Accessed: 20-May-2020]. [Google Scholar]
  19. Ali M. El-Nashar, “Cogeneration for power and desalination — state of the art review”, Desalination, vol. 134, Issues 1–3, pp 7-28, 2001, doi: https://doi.org/10.1016/S0011-9164(01)00111-4. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.