Open Access
Issue
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
Article Number 10004
Number of page(s) 11
Section Heat Transfer and Fluid Dynamics
DOI https://doi.org/10.1051/e3sconf/202019710004
Published online 22 October 2020
  1. A. Blanco, S. Roy, Numerical simulation of a free molecular electro jet, 51st AIAA Aerospace Sciences Meeting (2013). [Google Scholar]
  2. I. Moralev, V. Sherbakova, I. Selivonin, V. Bityurin, and M. Ustinov, Effect of the discharge constriction in DBD plasma actuator on the laminar boundary layer Int. J. Heat Mass Transfer. 116, pp. 1326–1340 (2018). [CrossRef] [Google Scholar]
  3. X. Huang, X. Zhang, Streamwise and spanwise plasma actuators for flow-induced cavity noise control, Phys. Fluids 20, 037101 (2008). [CrossRef] [Google Scholar]
  4. H. Yokoyama, I. Tanimoto, A. Iida, Experimental tests and aeroacoustic simulations of the control of cavity tone by plasma actuators. Appl. Sci., 7, 790 (2017). [CrossRef] [Google Scholar]
  5. H. Junhui, T. C. Corke, F. O. Thomas, Actuators for Separation Control of Low-Pressure Turbine Blades, AIAA J., 44, 1, pp. 51-57 (2006). [CrossRef] [Google Scholar]
  6. M. G. De Giorgi, S. Traficante, A. Ficarella, Performance Improvement of Turbomachinery using Plasma Actuators, GT2011-46413, Proceedings of ASME Turbo Expo 2011, pp. 369-380 (2011). [Google Scholar]
  7. M. G. De Giorgi, S. Traficante, C. De Luca, D. Bello, A. Ficarella, Active Flow Control Techniques on a Stator Compressor Cascade: a Comparison between Synthetic Jet and Plasma Actuators, GT2012-69535, Proceedings of ASME Turbo Expo 2012, pp. 439-450 (2012). [Google Scholar]
  8. F. Rodrigues, J. Páscoa J, F. Dias, Power consumption characterization of DBD plasma actuators for boundary layer control. International Conference on Engineering. 2015 [Google Scholar]
  9. X. Zhang, Z. Li Z., F. Sun, Z. Zhao, C. Wang, J Hu, Numerical Investigation of Multi-SDBD Plasma Actuators for Controlling Fluctuating Wind Load on Building Roofs. Appl. Sci., 9, 3493 (2019). [CrossRef] [Google Scholar]
  10. B. Zheng, M. Xue, G. Chang, Sliding discharge plasma actuation for forebody vortex control on a slender body at high angles of attack, AIP Adv., 10, 5, 055103 (2020). [CrossRef] [Google Scholar]
  11. S. Jignesh, S. Roy, J. C. Zito, Design of a microNewton thrust stand for low pressure characterization of DBD actuators, in: 51st AIAA Aerospace Sciences Meeting, Grapevine, TX, AIAA Paper, 755 (2013). [Google Scholar]
  12. F. Rodrigues, J. Pascoa, and M. Trancossi, “Heat generation mechanisms of DBD plasma actuators,” Exp. Therm. Fluid Sci. 90, pp. 55–65 (2018). [CrossRef] [Google Scholar]
  13. S. Pancheshnyi, G. J. M. Hagelaar, B. Eismann, L. C. Pitchford, Computer code ZDPlasKin, University of Toulouse (2008). [Google Scholar]
  14. D. L. Tsyganov, S. Pancheshnyi, Simulation of N-atom production in dielectric-barrier discharge in nitrogen at atmospheric pressure, Plasma Sources Science and Technology, 21 (2012). [Google Scholar]
  15. M. Abdollahzadeh, J. Páscoa, P. J. Oliveira, Implementation of the Classical Plasma-Fluid Model for Simulation of the Dielectric Barrier Discharge (DBD) Actuators in OpenFOAM (2016). [Google Scholar]
  16. J. P. Murphy, J. Kriegseis P. Lavoie, Scaling of Maximum Velocity, Body Force, and Power Consumption of Dielectric Barrier Discharge Plasma Actuators via Particle Image Velocimetry, Journal of Applied Physics, 113, 24, pp. 243301-1 – 243301-10 (2013). [CrossRef] [Google Scholar]
  17. C. L. Enloe, T. E. McLaughlin, R. D. VanDyken, K. D. Kachner, E. J. Jumper, T. C. Corke, M. Post, O. Haddad, Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Geometric Effects, AIAA Journal, 42, 3, pp. 595-604 (2004). [CrossRef] [Google Scholar]
  18. F. O. Thomas, T. C. Corke, M. Iqbal, A. Kozlov, D. Schatzman, Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control, AIAA Journal, 47, 9, pp. 2169-2178 (2009). [CrossRef] [Google Scholar]
  19. E. Pescini et al. Electrode material degradation monitoring for durable dielectric barrier discharge plasma actuators manufacturing. 54th AIAA Aerospace Sciences Meeting (2016). [Google Scholar]
  20. J. R. Roth, D. M. Sherman, S. P. Wilkinson, Electrohydrodynamic Flow Control with a Glow-Discharge Surface (2000). [Google Scholar]
  21. T. C. Corke, D. A. Cavalieri, E. Matlis, Boundary Layer Instability on a Sharp Cone at Mach 3.5 with Controlled Input (2001). [Google Scholar]
  22. M. L. Post, T. C. Corke, Separation Control on High Angle of Attack Airfoil Using Plasma Actuators, AIAA 20031024 (2003). [Google Scholar]
  23. L. S. Hultgren, D. Ashpis, Demonstration of Separation Delay with Glow-Discharge Plasma Actuators (2003). [Google Scholar]
  24. G. Touchard, Plasma actuators for aeronautics applications—state of art review, IJ PEST 2 (2008). [Google Scholar]
  25. D. E. Ashpis, D. R. Thurman, Dielectric Barrier Discharge (DBD) Plasma Actuators for Flow Control in Turbine Engines: Simulation of Flight Conditions in the Laboratory by Density Matching, International Journal of Turbo & Jet-Engines, 157-173 (2019). [CrossRef] [Google Scholar]
  26. T. Brauner, S. Laizet, N. Benard, E. Moreau, Modelling of dielectric barrier discharge plasma actuators for direct numerical simulations. 8th AIAA Flow Control Conference, p. 3774 (2016). [Google Scholar]
  27. Y. B. Suzen, P. G. Huang, J. D. Jacob, D. Ashpis, Numerical simulations of plasma based flow control applications, in AIAA Fluid Dyn. Conf. Exhibit, Toronto (2005). [Google Scholar]
  28. G. Nerettia, M. Taglioli, C. A. Borghi, Experimental determination and numerical evaluation under simplifying assumptions of the ozone concentration in an atmospheric-pressure air DBD plasma, EPJ D (2018). [Google Scholar]
  29. M. G. De Giorgi, E. Pescini, F. Marra, A. Ficarella, Plasma actuator scaling down to improve its energy conversion efficiency for active flow control in modern turbojet engines compressors, Appl. Therm. Eng., 106 (2016). [Google Scholar]
  30. T. Underwood, S. Roy, B. Glaz, Development of a Lumped Element Circuit Model for Approximation of Nanosecond Pulsed Dielectric Barrier Discharges, in 51st AI Aerospace Sciences Meeting including the New Horizons Forum and Aerospace, Grapeville, TX (2013). [Google Scholar]
  31. M. Abdollahzadeh, J. Páscoa, P. J. Oliveira, Numerical investigation on efficiency increase in high altitude propulsion systems using plasma actuators, in: ECCOMAS European Congress on Computational Methods in Applied Sciences and Engineering, pp. 6563–6581 (2012). [Google Scholar]
  32. URL: https://www.ZDPlasKin.laplace.univ-tlse.fr/n2-o2-. [Google Scholar]
  33. URL: www.lxcat.net. [Google Scholar]
  34. M. Capitelli, C.M. Ferreira, B.F. Gordiets, A.I. Osipov, Plasma Kinetics in Atmospheric Gases, Berlin: Springer (2000). [CrossRef] [Google Scholar]
  35. N. Minesi, P. Mariotto, G. D. Stancu, C. O. Laux, Role of the excited electronic states in the ionization of ambient air by a nanosecond discharge, AIAA Scitech 2020 Forum, (2020). [Google Scholar]
  36. D. M. Orlov, Modelling and Simulation of Single Dielectric Barrier Discharge Plasma Actuators, in Ph.D. Dissertation, University of Nothe Dame (2006). [Google Scholar]
  37. M. G. De Giorgi, E. Pescini, F. Marra, A. Ficarella, Experimental and Numerical Analysis of a Micro Plasma Actuator for Active Flow Control in Turbomachinery, in Proceedings of the ASME Turbo Expo. 2. 10.1115/GT2014-25337 (2014). [Google Scholar]
  38. D. J. Griffiths, Introduction to Electrodynamics, Upper Saddle River, NJ: Prentice Hall (1999). [Google Scholar]
  39. D.V. Roupassov, A.A. Nikipelov, M.M. Nudnova, Starikovskii A. Yu., Flow separation control by plasma actuator with nanosecond pulse periodic discharge, Gas Discharges and Their Applications, 17th International Conference, pp. 609-612, 7-12 Sept. (2008). [Google Scholar]
  40. E. Pescini, F. Marra, M. G. De Giorgi, L. Francioso, A. Ficarella, Investigation of the boundary layer characteristics for assessing the DBD plasma actuator control of the separated flow at low Reynolds numbers, Experimental Thermal and Fluid Science, 81, pp. 482-498 (2017). [CrossRef] [Google Scholar]
  41. S. Bürkle, Environmental Impacts on Dielectric Barrier Discharge Plasma Actuators. MS thesis. Technische Universität (2013). [Google Scholar]
  42. M. Kotsonis, S. Ghaemi, L. Veldhuis, F. Scarano, Measurement of the Body Force Field of Plasma Actuators, J. Phys. D: Appl. Phys., 44, 4, 045204 (2011). [CrossRef] [Google Scholar]
  43. D. Orlov, T. Apker, C. He, H. Othman, T. C. Corke, Modeling and Experiment of Leading Edge Separation Control Using SDBD Plasma Actuators, AIAA 45th Aerospace Sciences Meeting Reno, Nevada (2007). [Google Scholar]
  44. D. E. Ashpis, M. C. Laun, E. L. Griebeler, Progress Toward Accurate Measurement of Dielectric Barrier Discharge Plasma Actuator Power, AIAA J. (2017). [Google Scholar]
  45. E. Pescini, D.S. Martínez, M.G. De Giorgi, A. Ficarella, Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields. Acta Astronaut. 116, p. 318–332 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.