Open Access
Issue |
E3S Web Conf.
Volume 197, 2020
75th National ATI Congress – #7 Clean Energy for all (ATI 2020)
|
|
---|---|---|
Article Number | 11015 | |
Number of page(s) | 16 | |
Section | Turbomachinery | |
DOI | https://doi.org/10.1051/e3sconf/202019711015 | |
Published online | 22 October 2020 |
- C. B. Meher-Homji, M. A. Chaker, H.M. Motiwala, “Gas Turbine Performance Deterioration”, Proceedings of 30th Turbomachinery Symposium 139-175 (2001). [Google Scholar]
- G.F. Aker, H.I.H. Saravanamuttoo, “Predicting gas turbine performance degradation due to compressor fouling using computer simulation technique”, Journal of Engineering for Gas Turbines and Power 111 (1989). [Google Scholar]
- C.P. Bowen, N.D. Libertowski, M. Mortazavi, J.P. Bons, “Modeling deposition in turbine cooling passages with temperature-dependent adhesion and mesh morphing”, Journal of Engineering for Gas Turbines and Power 141(7) (2019). [PubMed] [Google Scholar]
- G. Agati, D. Borello, F. Rispoli, A. Salvagni, P. Venturini, “Numerical simulation of a particle-laden impinging jet: Effect of wall curvature on particle deposition”, Proceedings of the ASME Turbo Expo (2017). [Google Scholar]
- G. Agati, D. Borello, G. Camerlengo, F. Rispoli, J. Sesterhenn, “Direct Numerical Simulation of an Oblique Jet in a Particle-Laden Crossflow”, ERCOFTAC Series (2020). [Google Scholar]
- G. Agati, D. Borello, G. Camerlengo, F. Rispoli, J. Sesterhenn, “DNS of an Oblique Jet in a Particle-Laden Crossflow: Study of Solid Phase Preferential Concentration and Particle-Wall Interaction”, Flow, Turbulence and Combustion 105, 517–535 (2020). [CrossRef] [Google Scholar]
- F.J. Brooks, “GE gas turbine performance characteristics”, GE Power Systems, Report GER-3567H (2000). [Google Scholar]
- S. Madsen, L.E. Bakken, “Gas turbine fouling off-shore; effective online water wash through high water-to-air ratio”, Proceedings of the ASME Turbo Expo 2018 GT201875618 (2018). [Google Scholar]
- H. Margolis, “US Navy on-line compressor washing of marine gas turbine engines”, Proceedings of the International Gas Turbine and Aeroengine Congress and Exposition (1991). [Google Scholar]
- Q. Zhou, N. Li, X. Chen, T. Xu, S. Huie D. Zhang, “Analysis of water drop erosion on turbine blades based on a nonlinear liquid-solid impact model”, International Journal of Impact Engineering 36 (2009). [Google Scholar]
- B. Lee, K. Riu, S. Shin, S. Kwon, “Development of a water droplet erosion model for large steam turbine blades”, KSME International Journal 17 114–121 (2003). [CrossRef] [Google Scholar]
- Z. N. Kamkar, “Water Droplet Erosion Mechnisms of Ti-6Al-4V”. Doctoral Thesis, École de Technologie Spérieure, Montreal, Canada (2014). [Google Scholar]
- K. Brun, R. Kurz, M. G. Nored, J. M. Thorp, “Impact of continuous inlet fogging and overspray operation on ge 5002 gas turbine life and performance”, Proceedings of the ASME Turbo Expo 2014 7 545-554 (2014). [Google Scholar]
- M.H. Keegan, D.H. Nash, M.M. Stack, “On erosion issues associated with the leading edge of wind turbine blades”, Journal of Physics D: Applied Physics 46(38) (2013). [Google Scholar]
- V.A. Ryzhenkov, A.I. Lebedeva, A.F. Mednikov, “Erosion wear of the blades of wetsteam turbine stages: Present state of the problem and methods for solving it”, Thermal Engineering 58(9) 713-718 (2011). [CrossRef] [Google Scholar]
- K. Tsubouchi, N. Yasugahira, S. Yoshida, R. Kaneko, T. Sato, “Evaluation of water droplet erosion for advanced large steam turbine”, International Joint Power Generation Conference, ASME (1990). [Google Scholar]
- M. Ahmad, M. Schatz, M.V. Casey, “Experimental investigation of droplet size influence on low pressure steam turbine blade erosion”, Wear 303(1-2) 83-86 (2013). [CrossRef] [Google Scholar]
- A. Corsini, A. Castorrini, E. Morei, F. Rispoli, F. Sciulli, P. Venturini, “Modeling of rain drop erosion in a multi-MW wind turbine”, ASME Turbo Expo GT2015-42174 (2015). [Google Scholar]
- A. Castorrini, A. Corsini, F. Morabito, F. Rispoli, P. Venturini, “Numerical simulation with adaptive boundary method for predicting time evolution of erosion processes, ASME Turbo Expo GT2017-64675 (2017). [Google Scholar]
- A. Castorrini, A. Corsini, F. Rispoli, P. Venturini, “Numerical simulation of the blade aging process in an induced draft fan due to long time exposition to fly ash particles”, ASME Turbo Expo GT2018-76740 (2018). [Google Scholar]
- L. Cardillo, A. Corsini, G. Delibra, F. Rispoli, A.G. Sheard, P. Venturini, “Simulation of particle-laden flows in a large centrifugal fan for erosion prediction”, Proceedings of the ASME Turbo Expo (2014). [Google Scholar]
- M. Andreoli, S. Gabriele, P. Venturini, D. Borello, “New model to predict water droplets erosion based on erosion test curves. Application to on-line water washing of a compressor”, ASME Turbo Expo GT2019-92033 (2019). [Google Scholar]
- P. Venturini, M. Andreoli, D. Borello and F. Rispoli, S. Gabriele, “Modelling of water droplets erosion on a subsonic compressor cascade”. Flow, Turbulence and Combustion (2019). [PubMed] [Google Scholar]
- D. Borello, A. Salvagni, K. Hanjalić, “Effects of rotation on flow in an asymmetric ribroughened duct: LES study”, International Journal of Heat and Fluid Flow 55 104-119, (2015). [CrossRef] [Google Scholar]
- F. Di Gruttola, G. Agati, P. Venturini, D. Borello, F. Rispoli, S. Gabriele, D. Simone, “Numerical study of erosion due to online water washing in axial flow compressors, ASME Turbo Expo GT2020-14767 (2020) [Google Scholar]
- ANSYS Fluent Theory Guide, release 19. ANSYS, Inc., Southpointe (2018). [Google Scholar]
- D.W. Stanton, C. J. Rutland, “Multi-dimensional modelling of thin liquid films and spray-wall interactions resulting from impinging sprays”, International Journal of Heat and Mass Transfer 41 3037–3054 (1998). [CrossRef] [Google Scholar]
- A.L. Yarin, D.A. Weiss, “Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity”, J Fluid Mech 283 141-73 (1995). [CrossRef] [Google Scholar]
- C. Mundo, M. Sommerfeld, C. Tropea, “Droplet-wall collisions: experimental studies of the deformation and breakup process”, International Journal of Multiphase Flow 21(2) 151-173 (1995). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.