Open Access
E3S Web Conf.
Volume 200, 2020
The 1st Geosciences and Environmental Sciences Symposium (ICST 2020)
Article Number 02002
Number of page(s) 10
Section Environmental Management
Published online 23 October 2020
  1. The Central Bureau of Statistics. Kota Yogyakarta in Figure 2018. (2018) [Google Scholar]
  2. P. Sutton. An empirical environmental sustainability index derived solely from nighttime satellite imagery and ecosystem service valuation. J. Popul. Environ. (24), 293–311 (2003) [CrossRef] [Google Scholar]
  3. I. Ouedraogo, P. Defourny, and M. Vanclooster. Mapping the groundwater vulnerability for pollution at the pan African scale. J. Sci. Total Environ 544, 939-953 (2016) [CrossRef] [Google Scholar]
  4. B.M. Evans and L. W Myers. A GIS-based approach to evaluating regional groundwater pollution potential with DRASTIC. J. Soil Water Conserv. 45 (2), 242–245. (1990) [Google Scholar]
  5. L. Yin, E. Zhang, X. Wang, J. Wenninger, J. Dong, L. Guo, and J. Huang. A GIS-based DRASTIC model for assessing groundwater vulnerability in the Ordos Plateau, China. Environ. Earth Sci. 69 (1), 171–185 (2012) [CrossRef] [Google Scholar]
  6. L. Aller, T. Bennet, J. H. Leher, R. J. Petty and G. Hackett. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeological Settings. U.S. Environmental Proctection Agency, Ada Oklahoma 74820, EPA 600/2-87-035, 662 pp. (1987) [Google Scholar]
  7. H. Hendrayana, dan V. A. Vicente. Cadangan air tanah berdasarkan geometri dan konfigurasi sistem akuifer cekungan air tanah Yogyakarta-Sleman. In Prosiding Seminar Nasional Kebumian Ke-6: pp. 356–370 (2013) [Google Scholar]
  8. Sudarmadji. Geographical agitation of unconfined aquifer chemistry in Yogyakarta Municipality Agihan geografi sifat kimiawi air tanah bebas di Kota Madya Yogyakarta. Dissertation. Universitas Gadjah Mada. (1991). In Bahsasa [Google Scholar]
  9. D. P. E. Putra. Evolution of groundwater chemistry on shallow aquifer of Yogyakarta City urban area. Journal of South East Asian Applied Geology. 3 (2), 116–124 (2011) [Google Scholar]
  10. B. Farjad, T. A. Mohamed, N. Wijesekara, S. Pirasteh, and H. Z. B. M Shafri. Groundwater intrinsic vulnerability and risk mapping. In Proceedings of the ICE — Water Management 165 (8), 441–450 (2012) [Google Scholar]
  11. D. P. E. Putra and R. Azzam. Interactions between urban development and groundwater, a case study on Yogyakarta City – Indonesia, In Proceedings of the 16th Conference on Engineering Geology and from Forum Young Engineering Geologist, Bochum., German. (2007) [Google Scholar]
  12. I. S Babiker, A. A. Mohammed, T. Hiyama, and K. Kato. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan. Sci. Total Environ. 345 (1–3), 127-140 (2005) [CrossRef] [PubMed] [Google Scholar]
  13. World Health Organization. Guidelines for drinkingwater quality (4th ed.). Geneva: WHO Press (2011) [Google Scholar]
  14. ARGOSS. (2001). Guidelines for assessing the risk to groundwater from on-site sanitation. British Geological Survey Commissioned Report, CR/01/142, 97pp. [Google Scholar]
  15. Putra, D. P. E. The impact of urbanization on groundwater quality; a case study in Yogyakarta City-Indonesia. Dissertation. Mitteilungen zur Ingenieurgeologie und Hydrogeologie, heft Rheinisch-Westfalische Technische Hochschule Aachen. (2007) [Google Scholar]
  16. H. Hendrayana and D. P. E. Putra, Delineation of nitrate contaminant plume in Yogyakarta Urban Area, Yogyakarta, In Proceeding of 29th (IAGI) Association of Indonesian Geologist (2000) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.