Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01008
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202020101008
Published online 23 October 2020
  1. Plakitkina, L.S., Plakitkin, Y.A., & D’yachenko, K.I. (2019). Mirovye tendentsii razvitiya ugol’noy otrosli. GornayaPromyshlennost’, (1), 24-29. [Google Scholar]
  2. Sadovenko, I., & Inkin, A. (2018). Method for Stimulating Underground Coal Gasification. Journal of Mining Science, 54(3), 514-521. https://dx.doi.org/10.1134/S1062739118033941 [Google Scholar]
  3. Coal Atlas - Facts and figures on a fossil fuel. (2015). Heinrich Boll Foundation, Berlin, Germany, and Friends of the Earth International, London, UK. [Google Scholar]
  4. Sadovenko, I., Inkin, O., & Zagrytsenko, A. (2016). Theoretical and geotechnological fundamentals for the development of natural and man-made resources of coal deposits. Mining of Mineral Deposits, 10 (4), 1-10. https://doi.org/10.15407/mining10.04.001 [CrossRef] [Google Scholar]
  5. Otto, C., & Kempka, T. (2017). Prediction of Steam Jacket Dynamics and Water Balances in Underground Coal. Gasification Energies, 10(6), 739. [CrossRef] [Google Scholar]
  6. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. LondonUnited Kingdom:, CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b17547 [CrossRef] [Google Scholar]
  7. Bondarenko, V., Kovalevs’ka, I., Svystun, R., & Cherednichenko, Yu. (2013). Optimal parameters of wall bolts computation in the united bearing system of extraction workings frame-bolt support. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 5-9. https://doi.org/10.1201/b16354-2 [Google Scholar]
  8. Khorolskyi, A., Hrinov, V., & Kaliushenko, O. (2019). Network models for searching for optimal economic and environmental strategies for field development. Procedia Environmental Science, Engineering and Management, 6(3),463-471. [Google Scholar]
  9. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of thermodynamic conditions for gas hydrates formation from methane in the coal mines. Solid State Phenomena, (291), 155-172. https://doi.org/10.4028/www.scientific.net/SSP.291.155 [CrossRef] [Google Scholar]
  10. Khorolskyi, A., Hrinov, V., Mamaikin, O., & Demchenko, Yu. (2019). Models and methods to make decisions while mining production scheduling. Mining of Mineral Deposits, 13(4),53-62. https://doi.org/10.33271/mining13.04.053 [Google Scholar]
  11. Golubeva, Ye. (2020). Situatsiya v ugol’noy otrasli Ukrainy. Retrieved fromhttps://112.ua/statii/orzhel-posovetoval-detyam-shahterov-ne-idti-po-stopam-roditelev-pochemu-vlast-reshila-likvidirovat-shahty-522909.html [Google Scholar]
  12. Sadovenko, I., Inkin, O., Dereviahina, N., & Khryplyvets, Y. (2019). Actualization of prospects of thermal usage of groundwater of mines during liquidation. E3S Web of Conferences, (123), 01046. https://dx.doi.org/10.1051/e3sconf/201912301046 [CrossRef] [EDP Sciences] [Google Scholar]
  13. Bondarenko, V., Symanovych, G., & Koval, O. (2012). The mechanism of over-coal thin-layered massif deformation of weak rocks in a longwall. Geomechanical Processes During Underground Mining, 41-44. https://doi.org/10.1201/b13157-8 [Google Scholar]
  14. Hordiienko, V.V, Hordiienko, I.V., & Zavhorodnia, O.V. (2002). Teplove pole terytorii Ukrainy. Kyiv: Znannia Ukrainy, 168. [Google Scholar]
  15. Potenzialstudie warmes Grubenwasser - Fachbericht 90. (2018). Landesamt für Natur, Umwelt, und Verbraucherschutz Nordrhein-Westfahlen. Recklinghausen. [Google Scholar]
  16. Sadovenko, I., Rudakov, D., & Inkin, O. (2014). Geotechnical schemes to the multi-purpose use of geothermal energy and resources of abandoned mines. Progressive Technologies of Coal, CoalbedMethane, and Ores Mining, 443-450. https://dx.doi.org/10.1201/b17547 [Google Scholar]
  17. Loredo, C., Roqueni, N., & Ordônez, M.A. (2016). Modelling flow and heat transfer in flooded mines for geothermal energy use. International Journal of Coal Geology, (164), 115-122. https://dx.doi.org/10.1016/i.coal.2016.04.013 [CrossRef] [Google Scholar]
  18. Dickinson, J.S., Buik, N., Matthews, M.C., & Snijders, A. (2009). Aquifer thermal energy storage: theoretical and operational analysis. Géotechnique, 59(3),249-260. [CrossRef] [Google Scholar]
  19. Rudakov, D., Sadovenko, I., Inkin, O., & Yakubovskaya, Z. (2012). Modeling of heat transport in an aquifer during accumulation and extraction of thermal energy. Naukovyi VisnykNatsionalnoho Hirnychoho Universytetu, (1), 40-45. [Google Scholar]
  20. Snijders, A.L. (2010). Aquifer thermal energy storage in the Netherlands. Newsletter CADDET Energy Efficiency, Special Issue on the Netherlands, September. [Google Scholar]
  21. Rudakov, D., & Inkin, O. (2019). An assessment of technical and economic feasibility to install geothermal well systems across Ukraine. Geothermal Energy, 7(17). https://doi.org/10.1186/s40517-019-0134-7 [CrossRef] [Google Scholar]
  22. Empfehlungen Oberflächennahe Geothermie - Planung, Bau, Betrieb und Überwachung - EA Geothermie (2015). Berlin: Ernst & Sohn, DGG, DGGT. [Google Scholar]
  23. Viessmann. Teplovye nasosnye ustanovki Vitocal 300/350. Instruktsiya po proektirovaniyu. [Google Scholar]
  24. Pivnyak, G.G., Samusya, V.I., & Oksen’,Yu.I. (2017). Teoriya i praktika teplonanosnoy utilizatsii teploty shakhtnoy vody. Ugol’ Ukrainy, (3), 6-10. [Google Scholar]
  25. Belmas, I., Kogut, P., Kolosov, D., Samusia, V., & Onyshchenko, S. (2019). Rigidity of elastic shell of rubber-cable belt during displacement of cables relatively to drum. International Conference Essays of Mining Science and Practice, (109), 00005.https://doi.org/10.1051/e3sconf/201910900005 [Google Scholar]
  26. Kovalevs’ka, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 159-163.https://doi.org/10.1201/b16354-28 [Google Scholar]
  27. Yarembasha, I.F. (2004). Tekhnologiya zakrytiya (likvidatsii) ugol’nykh shakht. Donetsk: DonNTU. [Google Scholar]
  28. Sadovenko, I., Inkin, O., Yakubovskaya, Z., & Maksimova-Gulyayeva, N. (2012). Evaluation of gas losses during storage in aquifers of the Western Doniets Basin. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 18-24. [Google Scholar]
  29. Sadovenko, I., Rudakov, D., & Podvigina, O. (2010). Analysis of hydrogeodynamics in a mining region during exploitation till closure of coal mines. New Techniques and Technologies in Mining - School of Underground Mining, 61-69. https://doi.org/10.1201/b11329-12 [Google Scholar]
  30. Lund, J.W., & Toth, A.N. (2020). Direct Utilization of Geothermal Energy 2020 Worldwide Review.In Proceedings World Geothermal Congress (pp. 1-39). Reykjavik, Iceland. [Google Scholar]
  31. Shcherbak, V.V., & Arsenyuk, S.Yu. (2018). Analiz zahroz i ekolohichnykh ryzykiv, shcho vynykaiut vnaslidok urazhennia hirnychodobuvnykh pidpryiemstv v zoni lokalnoho viiskovoho konfliktu na skhodi Ukrainy. Zbirnyk Naukovykh Prats DonDTU, 1(47),40-46. [Google Scholar]
  32. Sadovenko I., Zahrytsenko A., Podvigina O., Dereviahina N., & Brzezniak S. (2018). Methodical and Applied Aspects of Hydrodynamic Modeling of Options of Mining Operation Curtailment. Solid State Phenomena, (277), 36-43. https://doi.org/10.4028/www.scientific.net/SSP.277.36. [CrossRef] [Google Scholar]
  33. Kuzmenko, O., Petlyovanyy, M., & Heylo, A. (2014). Application of fine-grained binding materials in technology of hardening backfill construction. Progressive Technologies of Coal, CoalbedMethane, and Ores Mining, 465-469. https://doi.org/10.1201/b17547-79 [CrossRef] [Google Scholar]
  34. Ulytskyi, O.A., Yermakov, V.M., Lunova, O.V., & al. (2019). Pytannia otsinky prohnozu zmin hidroheolohichnykh umov tekhnoekosystemy Selydivskoi hrupy shakht. Ekolohichna Bezpeka ta Pryrodokorystuvannia, 4(32),32-42. [Google Scholar]
  35. Gordiyenko, V.V., Gordiyenko, I.V., & Zavgorodnyaya, O.V. (2015). Teplovoe pole Donbassa. Geophysical Journal, 6(37),3-23. [Google Scholar]
  36. Moiseev, B.V., Zemenkov, Yu.D., Nalobin, N.V., Zemenkova, M.Yu., & Dudin, S.M. (2016). Metody teplovogo rascheta truboprovodov razlichnogo naznacheniya. Tyumen’: Tyumenskiy industrial’nyy universitet, 183. [Google Scholar]
  37. Vinogradov, S.N., Tarantsev, K.V., & Vinogradov, O.S. (2001). Vybor i raschet teploobmennikov. Penzenskiy gosudarstvennyy universitet, 100. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.