Open Access
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01007
Number of page(s) 11
Published online 23 October 2020
  1. Zeng, X., Wang, Z., Fan, J., Zhao, L., Lin, D., & Zhao, J. (2011). Problems of durability and reinforcement measures for underground structures in China. Journal of Rock mechanics and geotechnical engineering, 3(3),250-259. [CrossRef] [Google Scholar]
  2. Trofimov, V. (2019). On Deformation Stability of Rock Massif. Trigger Effects in Geosystems, 407-415. 43 [Google Scholar]
  3. Alam, S., Das, S.K., & Rao, B.H. (2019). Strength and durability characteristic of alkali activated GGBS stabilized red mud as geo-material. Construction and Building materials, (211), 932-942. [Google Scholar]
  4. Yerzhanov, Z., & Bergman, E. (1977). Polzuchest’solyanykhporod. Alma-Ata: Nauka, 110. [Google Scholar]
  5. Enomoto, T., Koseki, J., Tatsuoka, F., & Sato, T. (2015). Creep failure of sands exhibiting various viscosity types and its simulation. Soils and Foundations, 55(6),1346-1363. [CrossRef] [Google Scholar]
  6. Grimstad, G., Karstunen, M., Jostad, H.P., Sivasithamparam, N., Mehli, M., Zwanenburg, C., Haan, E., Amiri, S.A.G., Boumezerane, D., Kadivar, M., Ashfari, M.A.H., & Roningen, J.A. (2017). Creep of geomaterials - some finding from the EU project CREEP. European Journal of Environmental and Civil Engineering, 1-16. [Google Scholar]
  7. Yang, G.H., Jie, Y.X., & Li, G.X. (2013). A mathematical approach to establishing constituitive models for geomaterials. Journal of Applied Mathematics, (2013), [Google Scholar]
  8. Cao, T.D., Sanavia, L., & Schrefler, B.A. (2015). A thermo-hydro-mechanical model for multiphase geomaterials in dynamics with application to strain localization simulation. International Journal for Numerical Methods in Engineering, (107), 312-337. https://doi- org.ezproxy [Google Scholar]
  9. Zhang, S., Xu, S., Teng, J., & Xiong, Y. (2016). Effect of temperature on time-dependent behavior of geomaterials. Comptes Rendus Mecanique, 344(8),603-611. [CrossRef] [Google Scholar]
  10. Zhuravkov, M., & Staravoitov, E. (2011). Continuum mechanics. Elasticity and plasticity theory. Minsk: BGU. [Google Scholar]
  11. Bertram, A., & Gluge, R. (2015). Solid Mechanics. [Google Scholar]
  12. Zhuravkov, M., & Martynenko, M. (1995). Teoreticheskie osnovy deformatsionnoy mekhaniki blochno-sloistogo massiva solyanyh porod. Minsk: Universitetskoe. [Google Scholar]
  13. Konstantinova, S., Pesterin, V., & Pesterina, I. (2007). On various types of approximation of creep curves of samples of salt rocks. Izvestiya Vyzov. Gornyy Zhurnal, (4), 92-98. [Google Scholar]
  14. Baryakh, A., Asanov, V., & Pan’kov, I. (2008). Fiziko-mekhanicheskie svoystva solyanykh porod Verkhnekamskogo kaliynogo mestorozhdeniya. Perm’: Izdatel’stvo Permskogo gosudarstvennogo universiteta. [Google Scholar]
  15. Konstantinova, S., & Aptukov, V. (2013). Nekotorye zadachi mekhaniki deformirovaniya i razrusheniya solyanykh porod. Novosibirsk: Nauka. [Google Scholar]
  16. Baryakh, A., Konstantinova, S., Asanov, V. (1996). Defirmirovanie solyanyh porod. Ekaterinburg: UrO RAN. [Google Scholar]
  17. Kartashov, U. (1979). Prochnost’ i deformiruemost’ gornykhporod. Moskva: Nedra. [Google Scholar]
  18. Koltunov, M. (1976). Polzuchest’ i relaksatsiya. Moskva: Vysshaya shkola. [Google Scholar]
  19. Gabdrahimov, I., Dedukin, M., & Pozdeev, A. (1977). Creep and the phenomenological theory of long-term rock strength. In 5th applied problems of rock mechanics conference of the USSR (PP. 71-75). [Google Scholar]
  20. Laouafa, F., Prunier, F., Daouadji, A., Al Gali, H., & Darve, F. (2010). Stability in geomechanics, experimental and numerical analyses. Numerical and Analytical Methods in Geomechanics, (35), 112-139. [CrossRef] [Google Scholar]
  21. Onate, E., & Rojeck, J. (2004). Combination of discrete element and finite element methods for dymnamic analisys of geomechanics problems. Computer methods in Applied Mechanics and Engeneering, 193(27-29), 3087-3128. [CrossRef] [Google Scholar]
  22. Mikelic, A., Wang, B., Wheeler, M. F. (2014). Numerical convergence study of iterative coupling fo couoled flow and geomechanics. Computational Geosciences, (18), 325-341. [CrossRef] [Google Scholar]
  23. Park, B.Y, Sobolik, S.R., & Herrick, C.G. (2018). Geomechanical Model Calibration Using Field Measurements for a Petroleum Reserve. Rock mechanics and Rock Engineering, (51), 925-943. [Google Scholar]
  24. Sexton, B.G, McCabe, B.A. (2013). Numerical modelling of the improvements to primary and creep settlements offered by granular columns, Acta Geotechnica, (8), 447-464. [Google Scholar]
  25. Kazlouski, Y., Zhuravkov, M., & Bogdan, S. (2019). Shaft convergence analysis in a rock mass with a spatial heterogeneous creep. In 2th International Conference “Mines of the Future (p. 72). [Google Scholar]
  26. Norel’, B.K., Petrov, Yu.V., & Selyutina, N.S. (2019). Energeticheskie i vremennye kharakteristiki gornykh porod. Sankt-Peterburg: Izdatel’stvo SpbGU. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.