Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01034
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202020101034
Published online 23 October 2020
  1. Valovyi vnutrishniiproduct Ukrainy. (2020). Retrieved from http://surl.li/cvtn [Google Scholar]
  2. Factors of sustainable development in mining industry. (2020). Retrieved from http://surl.li/cyto [Google Scholar]
  3. Jamali, S., Wittig, V., Borner, J., Bracke, R., & Ostendorf, A. (2019). Application of high powered Laser Technology to alter hard rock properties towards lower strength materials for more efficient drilling, mining, and Geothermal Energy production. Geomechanics For Energy And The Environment, (20), 100112. https://doi.org/10.1016/i.gete.2019.01.001 [CrossRef] [Google Scholar]
  4. Liu, X., & Meng, X. (2018). Evaluation and empirical research on the energy efficiency of 20 mining cities in Eastern and Central China. International Journal of Mining Science and Technology, 28(3),525-531. https://doi.org/10.1016/nimst2018.01.002 [Google Scholar]
  5. Awuah-Offei, K. (2016). Energy efficiency in mining: a review with emphasis on the role of operators in loading and hauling operations. Journal of Cleaner Production, (117), 89-97. https://doi.org/10.1016/i.iclepro.2016.01.035 [Google Scholar]
  6. Zhang, Y., & Song, Y. (2020). Unified efficiency of coal mining enterprises in China: An analysis based on meta-frontier non-radial directional distance functions. Resources Policy, (65), 101581. https://doi.org/10.1016/i.resourpol.2020.101581 [CrossRef] [Google Scholar]
  7. Natsbank ochikuie pomirnoho pryskorennia zrostannia tsin. (2020). Retrieved from httpsy/www.uman.ua/economics/finance/nacbank-ochikuye-pomirnogo-priskorennya-zrostannya-cin-novini-ukraiina-10983452.html [Google Scholar]
  8. Temchenko, A., Temchenko, O., Stovpnyk. S., Shevchuk, N., Vapnichna, V., & Tulchinskiy, R. (2020). Theoretical Preconditions for Business Processes Management of Energy Efficiency in Mining Enterprise. Advances in Economics, Business and Management Research, (129), 31-38. https://doi.org/10.2991/aebmr.k.200318.005 [Google Scholar]
  9. Muller, P. (2020). Energy efficiency can be profit centre for mining. Retrieved from https://m.miningweekly.com/article/energy-efficiency-can-be-profit-centre-for-mining-2018-02-07 [Google Scholar]
  10. Sterling, D. (2020). Identifying opportunities to reduce the consumption of energy across mining and processing plants. Schnider Electric. Retrieved from https://www.osti.gov/etdeweb/servlets/purl/21390254 [Google Scholar]
  11. How to ensure energy efficiency in mining. (2020). Retrieved from https://www.miningmagazine.com/comminution/opinion/1353345/how-to`-ensure-energy-efficiency-in-mining [Google Scholar]
  12. Mining industry’s energy problem. (2020). Retrieved from https://www.wartsila.com/twentyfour7/energy/mining-industry-s-energy-problem [Google Scholar]
  13. Alvez, A., Aitken, D., Rivera, D., Vergara, M., McIntyre, N., & Concha, F. (2020). At the crossroads: can desalination be a suitable public policy solution to address water scarcity in Chile’s mining zones? Journal of Environmental Management, (258), 110039. [CrossRef] [PubMed] [Google Scholar]
  14. Kleshchov, A., Hugi, C., Terentiev, O., & Zaichenko, S. (2019). Voltage asymmetry influence on resource consumption at power generating plants. Journal of Urban And Environmental Engineering, 219-227. https://doi.org/10.4090/juee.2019.v13n2.219227 [CrossRef] [Google Scholar]
  15. Ma, D., Fei, R., & Yu, Y. (2019). How government regulation impacts on energy and CO2 emissions performance in China’s mining industry. Resources Policy, (62), 651-663. https://doi.org/10.1016/j.resourpol.2018.11.013 [CrossRef] [Google Scholar]
  16. Liu, X., Guo, P., & Nie, L. (2020). Applying emergy and decoupling analysis to assess the sustainability of China’s coal mining area. Journal of Cleaner Production, (243), 118577. https://doi.org/10.1016/j.jclepro.2019.118577 [Google Scholar]
  17. How Zambia’s mines can save money through energy efficiency. (2020). Retrieved from https://www.iisd.org/library/zambia-mines-energy [Google Scholar]
  18. SOU-NEE 40.1-37471933-54:2011. (2011). Vyznachennia tekhnolohichnykh vytrat elektrychnoi enerhii v transformatorakh i liniiakh elektroperedavannia. Kyiv: Ministerstvo enerhetyky ta vuhilnoi promyslovosti Ukrainy. [Google Scholar]
  19. Preobrazovatel’ chastoty SchneiderElectric ATV61 75 kVt 380V (ATV61HD75N4). (2020). Retrieved from http://eleksun.com.ua/preobrazovatel-chastoty-serii-altivar-61-moshchnost-75-kvt-3f-380v-schneider-electric.html [Google Scholar]
  20. Raschet okupayemosti preobrazovatelya chastoty. (2020). Retrieved from http://www.chastotnyj-preobrazovatel.ru/prichiny-vnedreniya-pch/raschet-okupaemosti-preobrazovatelya-chastoty/ [Google Scholar]
  21. Kleshchov, A. (2020). Znyzhennia vtrat elekroenerhii cherez nebalansy naprugy v umovakh ukrainskykh zaliznyts. Shliakhy spoluchennia, (1), 34-35. [Google Scholar]
  22. Silva, P., Afonso, J., Monteiro, V., Pinto, J., & Afonso, J. (2017). Development of a Monitoring System for Electrical Energy Consumption and Power Quality Analysis. In Proceedings of the World Congress on Engineering 2017 (pp. 327-332). Retrieved from http://www.iaeng.org/publication/WCE2017/WCE2017_pp327-332.pdf [Google Scholar]
  23. Targosz, R. (2009). Energy efficient distribution transformers. Leonardo energy. Retrieved from https://leonardo-energy.pl/wp-content/uploads/2017/08/Energy-efficient-distribution-transformers.pdf [Google Scholar]
  24. Najgeauer, M., Chwastek, K., & Szczyglowski, J. (2011). Energy efficient distribution transformers. Przegląd elektrotechniczny (Electrical Review), 2(87),111-114. Retrieved from https://www.researchgate.net/publication/257920578_Energy_efficient_distribution_transformers [Google Scholar]
  25. Mezhgosudarstvennyy Standart 13109-97. (1999). Elektricheskaya energiya. Sovmestimost” tekhnicheskikh sredstv elektromagnitnaya. Normy kachestva elektricheskoy energii v sistemakh elektrosnabzheniya obshchego naznacheniya. Moskva: Izdatel’stvo Standartov. [Google Scholar]
  26. Sudnova, V. (2012). The influence of electricity quality on the operation of electrical receivers. Retrieved from http://www.bt.dn.ua/harm/#p44 [Google Scholar]
  27. Ded, A.V., Biryukov, S.V., & Parshukova, A.V. (2014). Raschet dopolnitel’nykh poter’ moshchnosti ot vozdeystviya nesimmetrii napryazheniy i tokov v elementakh elektricheskikh setey. Sovremehhye Problemy Nauki i Obrazovaniya, (5). Retrieved from http://www.science-education.ru/ru/article/view?id=15249 [Google Scholar]
  28. Kharakteristiki transformatorov: gabarity, ves, parametry. (2016). Retrieved from [Google Scholar]
  29. Stabilizatory napryazheniy. (2015). Retrieved from [Google Scholar]
  30. Pidbir nasosa pry yoho roboti na merezhu zi zminnym u chasi hidtavlichnym oporom. (2015). Retrieved from https://essuir.sumdu.edu.ua/bitstream- [Google Scholar]
  31. Nasos 1K 100-65-250. Teknnicheskie kharakteristiki. (2020). Retrieved from https://www.res-elektro.ru/catalog/nasosy/vody/konsolnye/nasos_1k100-65-250_item/ [Google Scholar]
  32. Standardised Water Pump/Thermal Oil and Hot Water Pump. (2020). Retrieved from https://www.ksb.com/blob/1475410/fed4f9f49a99458982adc9788c4ca2dc/curve-etanorm-data.pdf [Google Scholar]
  33. Nasos konsol’nyy Etanorm. (2016). Retrieved from http://el-pumps.ru/p121452869-nasos-konsolnyi-etanorm.html [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.