Open Access
Issue
E3S Web Conf.
Volume 201, 2020
Ukrainian School of Mining Engineering - 2020
Article Number 01035
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202020101035
Published online 23 October 2020
  1. Fyk, M., Biletskyi, V., & Abbud, M. (2018). Resource evaluation of geothermal power plant under the conditions of carboniferous deposits usage in the Dnipro-Donetsk depression. E3S Web of Conferences, (60), 00006. https://doi.org/10.1051/e3sconf/20186000006 [CrossRef] [EDP Sciences] [Google Scholar]
  2. Pathak, V., Babadagli, T., Majorowicz, J.A., & Unsworth, M.J. (2014). Evaluation of Engineered Geothermal Systems as a Heat Source for Oil Sands Production in Northern Alberta. Natural Resources Research, 23(2),247-265. https://doi.org/10.1007/s11053-013-9218-4 [CrossRef] [Google Scholar]
  3. Weydt, L.M., Heldmann, C.-D.J., Machel, H.G., & Sass, I. (2018). From oil field to geothermal reservoir: assessment for geothermal utilization of two regionally extensive Devonian carbonate aquifers in Alberta, Canada. Solid Earth, (9), 953-983. https://doi.org/10.5194/se-9-953-2018 [CrossRef] [Google Scholar]
  4. Fyk, M., Biletskyi, V., Ryshchenko, I., & Abbood, M. (2019). Improving the geometric topology of geothermal heat exchangers in oil bore-holes. E3S Web of Conferences, (123), 01023. https://doi.org/10.1051/e3sconf/201912301023 [CrossRef] [EDP Sciences] [Google Scholar]
  5. Fyk, M., Biletskyi, V., Fyk, I., Bondarenko, V., & Al-Sultan, M. (2019). Improvement of an engineering procedure for calculating the non-isothermal transportation of a gas-liquid mixture. Eastern-European Journal of Enterprise Technologies, 3(5(99), 51-60. [CrossRef] [Google Scholar]
  6. Watson, S.M., Falcone, G., & Westaway, R. (2020). Repurposing Hydrocarbon Wells for Geothermal Use in the UK: a Preliminary Resource Assessment. Proceedings World Geothermal Congress 2020. Reykjavik, Iceland. [Google Scholar]
  7. Fyk, M., Fyk, I., Biletsky, V., Oliynyk, M., Kovalchuk, yu., Hnieushev, V., & Shapchenko, yu. (2018). Theoretical and applied aspects of using a thermal pump effect in gas pipeline systems. Eastern-European Journal of Enterprise Technologies, 1(8(91)), 39-48. Retrieved from https://doi.org/10.15587/1729-4061.2018.121667. [CrossRef] [Google Scholar]
  8. Vaganova, N. A., & Filimonov, M. Y. (2019). Optimization of location of injection wells in an open geothermal system. Proceedings of the 45th International Conference on Application of Mathematics in Engineering and Economics (AMEE’19). https://doi.org/10.1063/1.5133554 [Google Scholar]
  9. Toth, A.N., Szucs, P., Pap, J., Nyikos, A., & Fenerty, D.K. (2018). Converting Abandoned Hungarian Oil and Gas wells into Geothermal Sources. Proceedings, 43rd Workshop on Geothermal Reservoir Engineering. Stanford, California. [Google Scholar]
  10. Tomaszewska, B., Sowiżdżał, A., & Chmielowska, A. (2018). Selected technical aspects of well construction for geothermal energy utilization in Poland. Contemp. Trends. Geosci, 7(2), 188199. https://doi.org/10.2478/ctg-2018-0013 [Google Scholar]
  11. Sui, D., Wiktorski, E., Roksland, M., & Basmoen, T.A. (2019). Review and investigations on geothermal energy extraction from abandoned petroleum wells. Journal of Petroleum Exploration and Production Technology, 9(2),1135-1147. https://doi.org/10.1007/s13202-018-0535-3 [Google Scholar]
  12. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b17547 [CrossRef] [Google Scholar]
  13. Nian, Y.L., & Cheng, W.L. (2018). Evaluation of geothermal heating from abandoned oil wells. Energy, (142), 592-607. https://doi.org/10.1016/j.energy.2017.10.062 [CrossRef] [Google Scholar]
  14. Biletsky, V., Molchanov, P., Sokur, M., Gayko, G., Savyk, V., Orlovskyy, V., Liakh, M., yatsyshyn, T., & Fursa, R. (2017). Research into the process of preparation of Ukrainian coal by the oil aggregation method. Eastern-European Journal of Enterprise Technologies, 3(5(87)), 4553. https://doi.org/10.15587/1729-4061.2017.104123 [Google Scholar]
  15. Biletskyi, V., Molchanov, P., Orlovskyy, V., & Shpylovyi, L. (2017). Research into the mechanism of aggregate-forming objects contact with oil aggregation of finely-dispersed coal. Mining of Mineral Deposits, 11(4),19-28. https://doi.org/10.15407/mining11.04.019 [CrossRef] [Google Scholar]
  16. Nalla, G., Shook, G. M., Mines, G. L., & Bloomfield, K. K. (2005). Parametric sensivity study of operating and design variables in wellbore heat exchangers. Geothermics, 34(3),330-346. https://doi.org/10.1016/j.geothermics.2005.02.001 [Google Scholar]
  17. Shendrik, O., Fyk, M., Biletskyi, V., Kryvulia, S., Donskyi, D., Alajmeen, A., & Pokhylko, A. (2019). Energy-saving intensification of gas-condensate field production in the east of Ukraine using foaming reagents. Mining of Mineral Deposits, 13(2),82-90. [CrossRef] [Google Scholar]
  18. Li, F., Xu, T., Li, S., Feng, Bo, Jia, X., Feng, G., Zhu, H., & Jiang, Z. (2019). Assessment of Energy Production in the Deep Carbonate Geothermal Reservoir by Wellbore-Reservoir Integrated Fluid and Heat Transport Modeling. Geofluids, 2019, 1-18. [Google Scholar]
  19. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (Eds.). (2015). New Developments in Mining Engineering 2015. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b19901 [Google Scholar]
  20. Suarez-Arriaga, M.C. (2019). Thermodynamics of Deep Supercritical Geothermal Systems. IOP Conference Series: Earth and Environmental Science, (249), 012019. [CrossRef] [Google Scholar]
  21. Stefanović, V., Drobnjaković, B., & Pavlović, S. (2019). Necessary measures and calculation for dimension of coaxial heat exchanger for deep boreholes. IOP Conf. Series: Materials Science and Engineering, 477(1), 012054. https://doi.org/10.1088/1757-899X/477/1/012054. [CrossRef] [Google Scholar]
  22. Soldo, E., & Alimonti, C. (2015). From an Oilfield to a Geothermal One: Use of a Selection Matrix to Choose Between Two Extraction Technologies. In Proceedings World Geothermal Congress. Melbourne,Australia. [Google Scholar]
  23. Medhi, N., & Das, M. (2018). A study on abandoned oil/gas wells as sustainable sources of geothermal energy. In International Conference on Renewable & Alternate Energy (ICRAE- 2018). Guwahati, Assam, India. Assam. [Google Scholar]
  24. Michaelides, E.E. (2012). Entropy production and optimization of geothermal power plants. Journal of Non-Equilibrium Thermodynamics, 37(3),233-246. https://doi.org/10.1515/jnetdy-2011-0024 [CrossRef] [Google Scholar]
  25. Sircar, A., Yadav, K., & Sahajpal, S. (2016). Overview on Direct Applications of Geothermal Energy. International Advanced Research Journal in Science, Engineering and Technology, 3(9),128-137. https://doi.org/10.17148/IARJSET.2016.3925 [Google Scholar]
  26. Scafidia, J., & Gilfillana, S. M. V. (2018). The feasibility of the “all-in-one” concept in the UK North Sea: offsetting carbon capture and storage costs with methane and geothermal energy coproduction in a depleted hydrocarbon field. In 14th International Conference on Greenhouse Gas Control Technologies. Melbourne, Australia. [Google Scholar]
  27. Liu, J., Wang, F., Cai, W., Wang, Z., Wei, Q., & Deng, J. (2019). Numerical study on the effects of design parameters on the heat transfer performance of coaxial deep borehole heat exchanger. International Journal of Energy Research, 43(12),6337-6352. https://doi.org/10.1002/er.4357 [Google Scholar]
  28. Roksland, M., Basmoen, T. A., & Sui, D. (2017). Geothermal energy extraction from abandoned wells. EnergyProcedia, (105), 244-249. https://doi.org/10.1016/j.egypro.2017.03.309 [Google Scholar]
  29. Ziabakhsh-Ganji, Z., Nick, H.M., Donselaar, M.E., & Bruhn, D.F. (2018). Synergy potential for oil and geothermal energy exploitation. Applied Energy, (212), 1433-1447. [Google Scholar]
  30. Zhu, Y., Li, K., Liu, C., & Mgijimi, M. B. (2019). Geothermal Power Production from Abandoned Oil Reservoirs Using In Situ Combustion Technology. Energies, 12(23), 4476. https://doi.org/10.3390/en12234476 [Google Scholar]
  31. Zhang, L., Deng, Z., Zhang, K., Long, T., Desbordes, J. K., Sun, H., & Yang, Y. (2019). Well- Placement Optimization in an Enhanced Geothermal System Based on the Fracture Continuum Method and 0-1 Programming. Energies, (12), 709. https://doi.org/10.3390/en12040709 [Google Scholar]
  32. Yildirim, N., Parmanto, S., & Akkurt, G.G. (2019). Thermodynamic assessment of downhole heat exchangers for geothermal power generation. Renewable Energy, (141), 1080-1091. https://doi.org/10.1016/j.renene.2019.04.049 [Google Scholar]
  33. Song, X., Wang, G., Shi, Y., Zheng, R., & Li, J. (2019). Numerical Analysis on Thermal Characteristics of an Open Loop Geothermal System in a Single Well. Energy Procedia, (158), 6112-6117. https://doi.org/10.1016/j.egypro.2019.01.501 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.