Open Access
E3S Web Conf.
Volume 202, 2020
The 5th International Conference on Energy, Environmental and Information System (ICENIS 2020)
Article Number 06036
Number of page(s) 9
Section Green Infrastructure and Resilience
Published online 10 November 2020
  1. Seto, K.C., Güneralp, B., Hutyra, L.R., Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. 109, 16083–16088. (2012) [CrossRef] [Google Scholar]
  2. Verburg, P.H., Crossman, N., Ellis, E.C., Heinimann, A., Hostert, P., Mertz, O., Nagendra, H., Sikor, T., Erb, K.-H., Golubiewski, N., Grau, R., Grove, M., Konaté, S., Meyfroidt, P., Parker, D.C., Chowdhury, R.R., Shibata, H., Thomson, A., Zhen, L., 2015. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12, 29–41. [CrossRef] [Google Scholar]
  3. Rounsevell, M.D.A., Pedroli, B., Erb, K.H., Gramberger, M., Busck, A.G., Haberl, H., Kristensen, S., Kuemmerle, T., Lavorel, S., Lindner, M., Lotze-Campen, H., Metzger, M.J., Murray-Rust, D., Popp, A., Perez-Soba, M., Reenberg, A., Vadineanu, A., Verburg, P.H., Wolfslehner, B., Challenges for land system science. Land Use Policy 29, 899–910. (2012) [Google Scholar]
  4. Hersperger, A.M., Gennaio, M.P., Verburg, P.H., Bürgi, M., 2010. Linking land change with driving forces and actors: four conceptual models. Ecol. Soc. 15 (4), 1. [Google Scholar]
  5. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013). [Google Scholar]
  6. Bashit N., Prasetyo Y., and Suprayogi A., Klasifikasi Berbasis Objek untuk Pemetaan Penggunaan Lahan menggunakan Citra SPOT 5 di Kecamatan Ngaglik. Jurnal Teknik, Vol 40, No. 2. (2019) [Google Scholar]
  7. Sudaryanto. Studi Penggunaan Lahan Di Kecamatan Umbulharjo Kota Yogyakarta Berdasarkan Interpretasi Citra Quickbird. Magistra XXV(86), 112–118. (2013) [Google Scholar]
  8. T. Blaschke, “Object based image analysis for remote sensing,” ISPRS J. Photogramm. Remote Sens., vol. 65, pp. 2–16, (2010) [Google Scholar]
  9. L. Dragut ¸ and C. Eisank, “Automated object-based classification of topography from SRTM data,” Geomorphology, vol. 141–142, pp. 21–33, (2012) [CrossRef] [Google Scholar]
  10. Zhang J., and Jia L., A Comparison of Pixel-Based and Object-Based Land Cover Classification Methods in an Arid/Semi-arid Environment of Northwestern China, IEEE, Third International Workshop on Earth Observation and Remote Sensing Applications. (2014) [Google Scholar]
  11. G. J. Hay and T. Blaschke, “Foreword special issue: Geographic objectbased image analysis (GEOBIA),” Photogramm. Eng. Remote Sens., vol. 76, no. 2, pp. 121–122, (2010) [Google Scholar]
  12. Campbell, J. B., Wynne, R. H. Introduction to Remote Sensing. New York: Guilford Press. (2011) [Google Scholar]
  13. U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder, and M. Heynen, “Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information,” ISPRS J. Photogramm. Remote Sens., vol. 58, no. 3/4, pp. 239–258, (2004) [Google Scholar]
  14. Altman, N. S., An introduction to kernel and nearest-neighbor nonparametric regression. The American Statistician, 46 (3), 175-185 (1992) [Google Scholar]
  15. Li W., Wang S., and Li J., Object Based Building Extraction by QuickBird Image for Population Estimation A Case Study of the City of Waterloo. IEEE. (2014) [Google Scholar]
  16. Rejaur Rahman M, Saha S, Multi-resolution segmentation for object-based \ classification and accuracy assessment of land use/land cover classification using remotely sensed data. J Indian Soc Remote Sens, 36(2), 189-201 (2008) [CrossRef] [Google Scholar]
  17. Short, N. M, Landsat Tutorial WorkbookBasics of Satellite Remote Sensing, NASA, Washington DC. (1982) [Google Scholar]
  18. Richards, J. A., Remote Sensing Digital Image Analysis: An Introduction (Berlin: Springer). (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.