Open Access
E3S Web Conf.
Volume 202, 2020
The 5th International Conference on Energy, Environmental and Information System (ICENIS 2020)
Article Number 06037
Number of page(s) 12
Section Green Infrastructure and Resilience
Published online 10 November 2020
  1. K. Welde, B. Gebremariam, Effect of land use land cover dynamics on hydrological response of watershed: Case study of Tekeze Dam watershed, Northern Ethiopia. ISWCR 5, (2017) [Google Scholar]
  2. W. Pratama, S.B. Yuwono, Analisis Perubahan Penggunaan Lahan Terhadap Karakteristik Hidrologi Di Das Bulok. J. Sylva Lestari 4, 3 (2016) [Google Scholar]
  3. R.M.Z. Fauzi, Maryono, Kajian Erosi Dan Hasil Sedimen Untuk Konservasi Lahan DAS Kreo Hulu. J. Pembangunan Wilayah dan Kota 12, 4 (2016) [Google Scholar]
  4. M. Amin, Londuse Planning for Way Seputih Waterslted at Central Lampung by Water Management Model. J. Manusia dan Lingkungan 15, 3 (2008) [Google Scholar]
  5. D.R. Romlah, S.B. Yuwono, R. Hilmanto, and I.S. Banuwa, Pengaruh Perubahan Tutupan Hutan Terhadap Debit Way Seputih Hulu. J. Hutan Tropis 6, 2 (2018) [Google Scholar]
  6. S.C. Brown, V.L. Vesace, R.E. Lester, and M.T. Walter, Assessing the impact of drought and forestry on streamflows in south-eastern Australia using a physically based hydrological model. Environ. Earth Sci. 74, (2015) [Google Scholar]
  7. D.N. Khoi, T. Suetsugi, Impact of climate and land-use changes on hydrological processes and sediment yield—a case study of the Be River catchment, Vietnam. Hydro. Sci. Journal 59, 5 (2014) [Google Scholar]
  8. A.G. Jeffrey, M.N. Daniel, G.P. Walter, A.C. Karim, W.M. James, S. Saghavan, S. Chinnasamay, H.R. Daren, v.G. Ann, v.L.W. Michael, N. Kannan, J.M. Kumar, SWAT: Model use, calibration, and validation. ASABE 55, 4 (2012b) [Google Scholar]
  9. W. Sudjarit, S. Pukngam, N. Tangtham, Application of SWAT model for assessing effect on main functions of watershed ecosystem in Headwater, Thailand. IAEES 5, 2 (2015) [Google Scholar]
  10. S. L. Neitsch, J. G. Arnold, J. R. Kiniry, and J. R. Williams, Soil and WaterAssessment Tool. Texas: Texas AgriLife Reasearch, 647 (2009). [Google Scholar]
  11. M.K. Shrestha, F. Recknagel, J. Frizenschaf, and W. Meyer, Future climate and land uses effects on flow and nutrient loads of a Mediterranean catchment in South Australia. Science of the Total Environment 590-591, (2017) [Google Scholar]
  12. H. Koo, M. Chen, A. J. Jakeman, and F. Zhang, A global sensitivity analysis approach for identifying critical sources of uncertainty in non-identifiable, spatially distributed environmental models: A holistic analysis applied to SWAT for input datasets and model parameters. Environ. Model. Softw. 127, (2020) [Google Scholar]
  13. V. T. Nguyen, J. Dietrich, and B. Uniyal, Modeling interbasin groundwater flow in karst areas: Model development, application, and calibration strategy. Environ. Model. Softw. 124, (2020) [Google Scholar]
  14. H. Zhang et al., Rapid consolidation characteristics of Yellow River-derived sediment: Geotechnical characterization and its implications for the deltaic geomorphic evolution. Eng. Geol. 270, (2020) [Google Scholar]
  15. K. C. Abbaspour et al., Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 333, (2007) [Google Scholar]
  16. J. Yang, P. Reichert, K. C. Abbaspour, J. Xia, and H. Yang, Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China, J. Hydrol. 358, (2008) [CrossRef] [Google Scholar]
  17. M. P. Thavhana, M. J. Savage, and M. E. Moeletsi, SWAT model uncertainty analysis, calibration and validation for runoff simulation in the Luvuvhu River catchment, South Africa. Phys. Chem. Earth, 105, (2018) [Google Scholar]
  18. H. Zhang, B. Wang, D. L. Liu, M. Zhang, L. M. Leslie, and Q. Yu, Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia, J. Hydrol. 585, (2020) [Google Scholar]
  19. A. M. Le and N. G. Pricope, Increasing the accuracy of runoffand streamflow simulation in the Nzoia Basin, Western Kenya, through the incorporation of satellite-derived CHIRPS data. Water 9, 114 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.