Open Access
E3S Web Conf.
Volume 202, 2020
The 5th International Conference on Energy, Environmental and Information System (ICENIS 2020)
Article Number 11005
Number of page(s) 14
Section Energy and Instruments
Published online 10 November 2020
  1. JP Carvallo, PH Larsen, AH Sanstad, CA Goldman, "Load Forecasting in Electric Utility Integrated Resource Planning," 6, (2017) [Google Scholar]
  2. X. Sun, Z. Ouyang and D. Yue, "Short-Term Load Forecasting Based on Multivariate Linear Regression," IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing (2017) [Google Scholar]
  3. Shahzadeh, Abbas & Khosravi, Abbas & Nahavandi, Saeid, “Improving load forecast accuracy by clustering consumers using smart meter data”. 1-7. 10.1109/IJCNN. 7280393. (2015) [Google Scholar]
  4. Laurinec, Peter & Lucka, Maria. “New clustering-based forecasting method for disaggregated end-consumer electricity load using smart grid data”. 210-215. 10.1109/INFORMATICS.8327248. (2017) [Google Scholar]
  5. Krzysztof Gajowniczek, Tomasz Ząbkowski, “Simulation Study on Clustering Approaches For Short-Term Electricity Forecasting”, Complexity, Complex Optimization and Simulation in Power System, Volume 2018 [Google Scholar]
  6. Raza, Muhammad Qamar & Nadarajah, Mithulananthan & Li, Jiaming & Lee, Kwang, "Multivariate Ensemble Forecast Framework for Demand Prediction of Anomalous Days”. IEEE Transactions on Sustainable Energy, p. 6, (2018) [Google Scholar]
  7. Jianwei Mi, Libin Fan, Xuechao Duan , and Yuanying Qiu, “Short-Term Power Load Forecasting Method Based on”, Hindawi, Mathematical Problems in Engineering, Volume 2018 Improved Exponential Smoothing Grey Model (2017) [Google Scholar]
  8. Mujiati Dwi Kartikasari and Arif Rohmad Prayogio. “Demand Forecasting of Electricity in Indonesia with Limited Historical”, J. Phys.: Conf Data (2018) [Google Scholar]
  9. A Senen, “Studi Prakiraan Beban Listrik Secara Mikrospasial Berdasarkan Simulasi Tata Guna Lahan” Jurnal Media elektro (2013) [Google Scholar]
  10. Adri Senen, Titi Ratnasari, “Studi Peramalan Beban Rata – Rata Jangka Pendek Menggunakan Metoda Autoregressive Integrated Moving Average (ARIMA)”, Jurnal Ilmiah SUTET, Vol.7, No. 2, 201 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.