Open Access
Issue
E3S Web Conf.
Volume 203, 2020
Ecological and Biological Well-Being of Flora and Fauna (EBWFF-2020)
Article Number 02001
Number of page(s) 9
Section Advances in Crop Production
DOI https://doi.org/10.1051/e3sconf/202020302001
Published online 05 November 2020
  1. Y. Han, Z. Cheng, X. Zhao, et al. SSR marker assisted identification of resistance to soybean mosaic virus and Phytophthora root rot, Soybean science 32 (006): 740-743 (2013) [Google Scholar]
  2. J. Liangyu. Preliminary study on the function of PR10 and PrP genes related to Phytophthora sojae root rot resistance (2013) [Google Scholar]
  3. Li. B, Xue. J, sun D, et al. Research progress of Phytophthora root rot of Soybean Seed world 12 23-24 (2013) [Google Scholar]
  4. Liu Shuxia, pan Dongmei, Wei Guojiang, et al. Toxic effect of four plant extracts on soybean cyst nematode, Heilongjiang Agricultural Science 11 46-49 (2013) [Google Scholar]
  5. Zheng Yanan, Tian Feng, Chen Jingsheng, et al. Changes of cold resistant substances in soybean cyst nematode during dormancy, Journal of plant protection, 40 (3): 287-288 (2013) [Google Scholar]
  6. Tao Caihong, Pan Yan, Du Xiao. Preliminary report on the control effect of different fungicides on soybean downy mildew in Huanxian County, Agricultural science and technology and information 3, 43-44 (2013) [Google Scholar]
  7. Zhang Mingrong, Wu Haiying, he Zemin, et al. Occurrence and control of main diseases, pests and weeds of soybean interplanting in Sichuan Province Soybean science and technology, 4, 021 (2013) [Google Scholar]
  8. J. A. Wrather,S.R. Koenning Effects of diseases on soybean yields in the United States 1996 to 2007[J] Plant Health Prog 10 (2009) [Google Scholar]
  9. E.W. Park Effects of bacterial blight on soybean yield Plant disease,70 (1986) [Google Scholar]
  10. J. E. Cross,B. W. Kennedy,J. W. Lambert,et al Pathogenic races of the bacterial blight pathogen of soybeans,Pseudomonas Glycinea, Plant Disease Reporter, 50(8), 557-560 (1966) [Google Scholar]
  11. L. K. Prom,J. R. Venette Races of Pseudomonas syringae pv. Glycinea on commercial soybean in eastern North Dakota, Plant disease 81(5 ) 541-544 (1997) [CrossRef] [PubMed] [Google Scholar]
  12. Ding Junjie. Research survey of resistance identification of soybean bacterial spot disease [J]. Heilongjiang Agricultural Science, (1): 132-134 (2013) [Google Scholar]
  13. K. Chiku,K. Tsunemi,M. Yamamoto,et al Defects in D-Rhamnosyl Residue Biosynthetic Genes Affect Lipopolysaccharide Structure,Motility,and Cell-Surface Hydrophobicity in Pseudomonas syringae Pathovar Glycinea Race 4, Bioscience, biotechnology,and biochemistry, 77(3), 505-510 (2013) [Google Scholar]
  14. J. N. Worley,A. B. Russell,A. G. Wexler,et al. Pseudomonas syringae pv. tomato DC3000 CmaL (PSPTO4723),a DUF1330 family member,is needed to produce L-allo-isoleucine,a precursor for the phytotoxin coronatine, Journal of bacteriology, 195(2), 287-296 (2013) [CrossRef] [PubMed] [Google Scholar]
  15. H. C. McCann,E. H. A. Rikkerink,F. Bertels,et al. Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease, PLoS pathogens,9(7), e1003503 (2013) [Google Scholar]
  16. Zhao Haihong. The causes of soybean bacterial macular disease and its control methods Heilongjiang Agricultural Science, 11, 159-160 (2013) [Google Scholar]
  17. H. Abdel-Haleem,E. D. Wood,H. R. Boerma,et al Registration of G08PR-394 and 09PR-80 Soybean Germplasm Lines with Diverse Pedigrees Journal of Plant Registrations, 7(3), 347-352 (2013) [Google Scholar]
  18. S. Lee,D. S. Yang,S. R. Uppalapati,et al. Suppression of plant defense responses by extracellular metabolites from Pseudomonas syringae pv. tabaci in Nicotiana benthamiana BMC plant biology, 13(1), 65 (2013) [CrossRef] [PubMed] [Google Scholar]
  19. K. J. Gupta,Y. Brotman,S. Segu,et al The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco, Journal of experimental botany 64(2), 553-568 (2013) [CrossRef] [PubMed] [Google Scholar]
  20. Wang Fang. Identification and comprehensive control of soybean bacterial diseases [J]. Soybean bulletin, 5:009 (2007) [Google Scholar]
  21. P. Broz,D. M. Monack Newly described pattern recognition receptors team up against intracellular pathogens, Nature Reviews Immunology,13(8), 551-565 (2013) [CrossRef] [PubMed] [Google Scholar]
  22. X. W. Wang,J. X. Wang Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections, Fish & shellfish immunology, 34(4), 981-989 (2013) [CrossRef] [PubMed] [Google Scholar]
  23. Y. Sun,L. Li,A. P. Macho,et al Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex Science 342(6158), 624-628 [Google Scholar]
  24. W. Y. Song,G. L. Wang,L. L. Chen,et al A receptor kinase-like protein encoded by the rice disease resistance gene,Xa21, Science,270(5243), 1804-1806 (2012) [Google Scholar]
  25. L. Gómez-Gómez,T. Boller FLS2: An LRR receptor–like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis, Molecular cell, 5(6), 1003-1011 (2000) [CrossRef] [PubMed] [Google Scholar]
  26. K. Sawinski,S. Mersmann,S. Robatzek,et al Guarding the green: pathways to stomatal immunity Molecular Plant-Microbe Interactions,26(6): 626-632 (2013) [CrossRef] [Google Scholar]
  27. M. Albert,A. K. Jehle,U. Fürst,et al A two-hybrid-receptor assay demonstrates heteromer formation as switch-on for plant immune receptors Plant physiology, 163(4) 1504-1509 (2013) [CrossRef] [PubMed] [Google Scholar]
  28. B. Schulze,T. Mentzel,A. K. Jehle,et al Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1 Journal of Biological Chemistry, 285(13): 9444-9451 (2010) [CrossRef] [Google Scholar]
  29. D. R. Hann,A .Domínguez‐Ferreras,V. Motyka,et al The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity New Phytologist, 201(2): 585-598 (2014) [CrossRef] [Google Scholar]
  30. D. R. Hann,A. Domínguez‐Ferreras,V Motyka,et al The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity New Phytologist, 201(2): 585-598 (2014) [CrossRef] [Google Scholar]
  31. A Akamatsu , Wong H L , Fujiwara M , et al An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 module is an essential early component of chitin-induced rice immunity, Cell host & microbe, 13(4): 465-476 (2013) [Google Scholar]
  32. X. Chen,S. Zuo,B. Schwessinger,et al. An XA21-Associated Kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors, Molecular Plant, ssu003 (2014) [Google Scholar]
  33. D. Chinchilla,C. Zipfel,S. Robatzek,et al A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence Nature,448(7152), 497-500 (2007) [PubMed] [Google Scholar]
  34. V. Göhre,T. Spallek,H. Häweker,et al Plant pattern-recognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB, Current Biology, 18(23), 1824-1832 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.