Open Access
Issue
E3S Web Conf.
Volume 203, 2020
Ecological and Biological Well-Being of Flora and Fauna (EBWFF-2020)
Article Number 03002
Number of page(s) 10
Section Protection and Use of Natural Resources
DOI https://doi.org/10.1051/e3sconf/202020303002
Published online 05 November 2020
  1. D.R. Anto Evaluation of Meteorological Forest Fire Risk Indices and Projection of Fire Risk For German Federal States Master Thesis Warsaw University of Life Sciences (2011) [Google Scholar]
  2. J. Bedia. S. Herrera. J.M. Gutiérrez. A. Benali. S. Brands. B. Mota. J.M. Moreno Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change Agric. For. Meteorol, 214–215 369-379. (2015). https://doi.org/10.1016/j.agrformet.2015.09.002 [Google Scholar]
  3. El Bouhissi. M. . Bouidjra. S. and Benabdeli. K. GIS. Forest Fire Prevention and Risk Matrix in the National Forest of Khoudida. Sidi Bel Abbes. Algeria, Open Journal of Ecology 356-369 (2020) doi: 10.4236/oje.2020.106022.10.. [CrossRef] [Google Scholar]
  4. F. Chen. S. Niu. X. Tong. J. Zhao. Y. Sun. T. He The impact of precipitation regimes on forest fires in Yunnan Province. Southwest China Sci. World J..(2014). Article 326782. 10.1155/2014/326782 [Google Scholar]
  5. M. Diakakis. G. Xanthopoulos. L. Gregos Analysis of forest fire fatalities in Greece: 1977–2013 Int. J. Wildland Fire, 25 (7), 797-809 (2016). https://doi.org/10.1071/WF15198 [CrossRef] [Google Scholar]
  6. M.A. Finney The challenge of quantitative risk analysis for wildland fire Forest Ecol. Manag, 211 (1), 97-108 (2005). 10.1016/j.foreco.2005.02.010 https://doi.org/ [Google Scholar]
  7. K. Lagouvardos. V. Kotroni. T.M. Giannaros. S. Dafis Meteorological conditions conducive to the rapid spread of the deadly wildfire in Eastern Attica. Greece Bull. the Am. Meteorol. Soc.. 100, 2137-2145, (2019). 10.1175/bams-d-18-0231.1 [CrossRef] [Google Scholar]
  8. N. Read. T.J. Duff. P.G. Taylor A lightning-caused wildfire ignition forecasting model for operational use Agric. For. Meteorol, 253–254, 233-246 (2018). https://doi.org/10.1016/j.agrformet.2018.01.037 [Google Scholar]
  9. M. Rodrigues. J.C. González-Hidalgo. D. Peña-Angulo. A. Jiménez-Ruano Identifying wildfire-prone atmospheric circulation weather types on mainland Spain Agric. For. Meteorol.. 264 (j.agrformet.2018.10.005) (2019). pp. 92-103 https://doi.org/10.1016/ [Google Scholar]
  10. M. Rodrigues. R.M. Trigo. C. Vega-García. A. Cardil Identifying large fire weather typologies in the Iberian Peninsula Agric. For. Meteorol, 280 (2020). Article 107789. https://doi.org/10.1016/j.agrformet.2019.107789 [Google Scholar]
  11. J. San-Miguel-Ayanz. T. Durrant. R. Boca Moffat Forest fires in Europe Middle East and North Africa Publications Office of the European Union. Luxembourg (2018). https://doi.org/10.2760/663443 978-92-79-92831-4 [Google Scholar]
  12. R.L. Snyder. D. Spano. P. Duce. D. Baldocchi. L. Xu. K.T. Paw U A fuel dryness index for grassland fire-danger assessment Agric, Meteorol, 139 (1–2), 1-11 (2006). https://doi.org/10.1016/j.agrformet.2006.05.006 [Google Scholar]
  13. S.W. Taylor. M.E. Alexander Science. technology. and human factors in fire danger rating: the Canadian experience Int. J. Wildland Fire, 15, 121-135 (2006). [CrossRef] [Google Scholar]
  14. C. Wastl. C. Schunk. M. Lüpke. G. Cocca. M. Conedera. E. Valese. A. Menzel Large-scale weather types. forest fire danger. and wildfire occurrence in the Alps Agric. Meteorol. 168, 15-25 (2013). https://doi.org/10.1016/j.agrformet.2012.08.011 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.