Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 01004
Number of page(s) 20
Section Keynote Papers
DOI https://doi.org/10.1051/e3sconf/202020501004
Published online 18 November 2020
  1. L. Laloui and A. F. Rotta Loria, Analysis and Design of Energy Geostructures: Theoretical Essentials and Practical Application (Academic Press, 2019) [Google Scholar]
  2. I. E. A. International Energy Agency, World Energy Statistics and Balances (International Energy Agency, 2019) [Google Scholar]
  3. E. P. B. D. recast, Energy Performance of Buildings Directive, Off. J. Eur. Union 153, 13 (2010) 4. ASHRAE, Vision 2020, 28 (2008) [Google Scholar]
  4. P. Bourne-Webb, S. Burlon, S. Javed, S. Kürten, and F. Loveridge, Renew. Sustain. Energy Rev. 65, 402 (2016) [Google Scholar]
  5. A. Vieira, J. Maranha, P. Christodoulides, M. Alberdi-Pagola, F. Loveridge, F. Nguyen, G. Florides, G. Radioti, F. Cecinato, and I. Prodan, Energies 10, 2044 (2017) [Google Scholar]
  6. J. Fadejev, R. Simson, J. Kurnitski, and F. Haghighat, Energy 122, 390 (2017) [CrossRef] [Google Scholar]
  7. P. J. Bourne-Webb and T. M. Bodas Freitas, Renew. Energy 147, 2572 (2020) [Google Scholar]
  8. F. Loveridge, J. S. McCartney, G. A. Narsilio, and M. Sanchez, Geomech. Energy Environ. 22, 100173 (2020) [Google Scholar]
  9. L. Laloui, M. Moreni, and L. Vulliet, Can. Geotech. J. 40, 388 (2003) [CrossRef] [Google Scholar]
  10. H. Brandl, Géotechnique 56, 81 (2006) [Google Scholar]
  11. P. Bourne-Webb, T. B. Freitas, and R. da Costa Gonçalves, Energy Build. 125, 130 (2016) [Google Scholar]
  12. M. Peltier, A. F. Rotta Loria, L. Lepage, E. Garin, and L. Laloui, Appl. Therm. Eng. 159, 113844 (2019) [Google Scholar]
  13. L. Laloui, M. Nuth, and L. Vulliet, Int. J. Numer. Anal. Methods Geomech. 30, 763 (2006) [Google Scholar]
  14. G. A. Akrouch, M. Sánchez, and J.-L. Briaud, Acta Geotech. 9, 399 (2014) [Google Scholar]
  15. J. S. McCartney and K. D. Murphy, DFI J. 6, 26 (2012) [CrossRef] [Google Scholar]
  16. T. Mimouni and L. Laloui, Can. Geotech. J. 52, 1913 (2015) [CrossRef] [Google Scholar]
  17. A. F. Rotta Loria and L. Laloui, Géotechnique 67, 374 (2017) [CrossRef] [Google Scholar]
  18. P. J. Bourne-Webb, B. L. Amatya, K. Soga, T. Amis, C. Davidson, and P. Payne, Géotechnique 59, 237 (2009) [CrossRef] [Google Scholar]
  19. P. J. Bourne-Webb, B. Amatya, and K. Soga, Proc. ICE-Geotech. Eng. 166, 170 (2011) [CrossRef] [Google Scholar]
  20. A. F. Rotta Loria and L. Laloui, in Int. Symp. Energy Geotech. SEG 2018 (2018), pp. 218–225 [Google Scholar]
  21. A. F. Rotta Loria and L. Laloui, Géotechnique 68, 834 (2018) [CrossRef] [Google Scholar]
  22. R. G. Campanella and J. K. Mitchell, J. Soil Mech. Found. Eng. Div. ASCE 94, 709 (1968) [Google Scholar]
  23. K. R. Demars and R. D. Charles, Can. Geotech. J. 19, 188 (1981) [Google Scholar]
  24. G. Baldi, T. Hueckel, and R. Pellegrini, Can. Geotech. J. 25, 807 (1988) [Google Scholar]
  25. C. Cekerevac and L. Laloui, Int. J. Numer. Anal. Methods Geomech. 28, 209 (2004) [Google Scholar]
  26. H. M. Abuel-Naga, D. T. Bergado, and B. F. Lim, Soils Found. 47, 423 (2007) [CrossRef] [Google Scholar]
  27. A. Di Donna and L. Laloui, Eng. Geol. 190, 65 (2015) [Google Scholar]
  28. A. Vega and J. S. McCartney, Environ. Geotech. 2, 257 (2014) [CrossRef] [Google Scholar]
  29. C. W. W. Ng, S. H. Wang, and C. Zhou, Géotechnique Lett. 6, 124 (2016) [CrossRef] [Google Scholar]
  30. J. S. McCartney, Y. Xiao, H. Liu, and H. Liu, Geotech. Test. J. 41, (2018) [Google Scholar]
  31. C. J. R. Coccia and J. S. McCartney, Comput. Geotech. 80, 26 (2016) [Google Scholar]
  32. H. G. Poulos, Géotechnique 39, 365 (1989) [CrossRef] [Google Scholar]
  33. A. F. Rotta Loria, DFI J. 12, 94 (2019) [CrossRef] [Google Scholar]
  34. A. F. Rotta Loria, M. Bocco, C. Garbellini, A. Muttoni, and L. Laloui, Geomech. Energy Environ. 21, 100153 (2020) [CrossRef] [Google Scholar]
  35. SIA-D0190, Utilisation de La Chaleur Du Sol Par Des Ouvrages de Fondation et de Soutènement En Béton. Guide Pour La Conception, La Realisation et La Maintenance (Zurich, Switzerland, 2005) [Google Scholar]
  36. A. Di Donna, F. Cecinato, F. Loveridge, and M. Barla, Proc. Inst. Civ. Eng.-Geotech. Eng. 170, 232 (2017) [CrossRef] [Google Scholar]
  37. J. Zannin, A. Ferrari, M. Pousse, and L. Laloui, Undergr. Space (2020) [Google Scholar]
  38. A. Di Donna and M. Barla, Environ. Geotech. 3, 214 (2016) [Google Scholar]
  39. A. Insana and M. Barla, Renew. Energy 152, 781 (2020) [Google Scholar]
  40. T. Bergman, F. Incropera, A. Lavine, and D. DeWitt, Fundamentals of Heat and Mass Transfer (Wiley, Hoboken, New Jersey, United States, 2011) [Google Scholar]
  41. M. Li and A. C. Lai, Appl. Energy 151, 178 (2015) [Google Scholar]
  42. L. R. Ingersoll, O. J. Zabel, and A. C. Ingersoll, Heat Conduction with Engineering, Geological, and Other Applications (Mc-Graw Hill, New York, United States, 1954) [Google Scholar]
  43. J. Claesson and P. Eskilson, Energy 13, 509 (1988) [CrossRef] [Google Scholar]
  44. P. Eskilson, Thermal Analysis of Heat Extraction Boreholes, 1987 [Google Scholar]
  45. ASHRAE, ASHRAE Handbook: HVAC Applications (Atlanta, United States, 2011) [Google Scholar]
  46. H. Carslaw and J. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, United Kingdom, 1959) [Google Scholar]
  47. M. Li and A. C. Lai, Energy 38, 255 (2012) [CrossRef] [Google Scholar]
  48. F. Loveridge and W. Powrie, Energy 57, 554 (2013) [CrossRef] [Google Scholar]
  49. F. Loveridge and W. Powrie, Geothermics 50, 122 (2014) [Google Scholar]
  50. C. Xia, M. Sun, G. Zhang, S. Xiao, and Y. Zou, Energy Build. 52, 50 (2012) [Google Scholar]
  51. M. Sun, C. Xia, and G. Zhang, Energy Build. 61, 250 (2013) [Google Scholar]
  52. S. Kürten, D. Mottaghy, and M. Ziegler, Acta Geotech. 10, 219 (2015) [Google Scholar]
  53. I. Shafagh, S. Rees, I. Urra Mardaras, M. Curto Janó, and M. Polo Carbayo, Energies 13, 300 (2020) [Google Scholar]
  54. F. Tinti, D. Boldini, M. Ferrari, M. Lanconelli, S. Kasmaee, R. Bruno, H. Egger, A. Voza, and R. Zurlo, Tunn. Undergr. Space Technol. 70, 182 (2017) [CrossRef] [Google Scholar]
  55. G. Zhang, C. Xia, M. Sun, Y. Zou, and S. Xiao, Cold Reg. Sci. Technol. 88, 59 (2013) [Google Scholar]
  56. S. Burlon, J. Habert, F. Szymkievicz, M. Suryatriyastuti, and H. Mroueh, in Eur. Geotherm. Congr. (2013), pp. 1–6 [Google Scholar]
  57. T. Mimouni and L. Laloui, Acta Geotech. 9, 355 (2014) [Google Scholar]
  58. D. Chen and J. S. McCartney, Int. J. Geomech. 04016159 (2016) [Google Scholar]
  59. E. Ravera, M. Sutman, and L. Laloui, Comput. Geotech. 103294 (2019) [Google Scholar]
  60. C. Garbellini and L. Laloui, Comput. Geotech. 114, 103115 (2019) [Google Scholar]
  61. H. G. Poulos and E. H. Davis, Geotechnique 18, 351 (1968) [CrossRef] [Google Scholar]
  62. H. G. Poulos and N. S. Mattes, Géotechnique 19, 285 (1969) [CrossRef] [Google Scholar]
  63. R. Butterfield and P. Banerjee, Géotechnique 21, 43 (1971) [CrossRef] [Google Scholar]
  64. P. Banerjee and T. Davies, Géotechnique 28, 309 (1978) [CrossRef] [Google Scholar]
  65. J. Zannin, A. F. Rotta Loria, Q. Llabjani, and L. Laloui, Comput. Geotech. Under review (2020) [Google Scholar]
  66. C. Garbellini and L. Laloui, Géotechnique 10.1680/jgeot.19.P.208 (2019) [Google Scholar]
  67. E. Winkler, Die Lehre von Der Elasticitaet Und Festigkeit: Mit Besonderer Rücksicht Auf Ihre Anwendung in Der Technik Für Polytechnische Schulen, Bauakademien, Ingenieue, Maschinenbauer, Architecten, Etc (Dominicus, 1867) [Google Scholar]
  68. H. M. Coyle and L. C. Reese, J. Soil Mech. Found. Div 92, (1966) [Google Scholar]
  69. C. Knellwolf, H. Peron, and L. Laloui, J. Geotech. Geoenvironmental Eng. 137, 890 (2011) [CrossRef] [Google Scholar]
  70. C. Pasten and J. C. Santamarina, J. Geotech. Geoenvironmental Eng. 140, 06014003 (2014) [CrossRef] [Google Scholar]
  71. M. Suryatriyastuti, H. Mroueh, and S. Burlon, Comput. Geotech. 55, 378 (2014) [Google Scholar]
  72. M. Sutman, C. G. Olgun, and L. Laloui, J. Geotech. Geoenvironmental Eng. 145, 04018101 (2019) [CrossRef] [Google Scholar]
  73. C. Iodice, R. D. Laora, and A. Mandolini, J. Geotech. Geoenvironmental Eng. 146, 04020016 (2020) [CrossRef] [Google Scholar]
  74. E. Ravera, M. Sutman, and L. Laloui, J. Geotech. Geoenvironmental Eng. 146, 04020042 (2020) [CrossRef] [Google Scholar]
  75. H. G. Poulos and E. H. Davis, Pile Foundation Analysis and Design (Wiley, New York:, 1980) [Google Scholar]
  76. A. F. Rotta Loria and L. Laloui, Comput. Geotech. 80, 121 (2016) [Google Scholar]
  77. A. F. Rotta Loria and L. Laloui, Comput. Geotech. 90, 144 (2017) [Google Scholar]
  78. A. F. Rotta Loria, A. Vadrot, and L. Laloui, Geomech. Energy Environ. 16, 1 (2018) [CrossRef] [Google Scholar]
  79. H. G. Poulos and N. S. Mattes, J. Geotech. Geoenvironmental Eng. 100, 185 (1974) [Google Scholar]
  80. H. G. Poulos, CE Trans Inst Engrs Aust. CE10 2 206 (1968) [Google Scholar]
  81. E. H. Davis and H. G. Poulos, Aust. Geotech. J. 2, 21 (1972) [Google Scholar]
  82. H. G. Poulos, Géotechnique 18, 449 (1968) [Google Scholar]
  83. R. D. Mindlin, J. Appl. Phys. 7, 195 (1936) [Google Scholar]
  84. Y. Chow, Int. J. Numer. Anal. Methods Geomech. 10, 59 (1986) [Google Scholar]
  85. A. F. Rotta Loria, A. Vadrot, and L. Laloui, Comput. Geotech. 86, 9 (2017) [Google Scholar]
  86. H. G. Poulos, J. Geotech. Eng. 114, 697 (1988) [CrossRef] [Google Scholar]
  87. A. F. Rotta Loria and L. Laloui, Géotechnique 67, 691 (2017) [CrossRef] [Google Scholar]
  88. M. F. Randolph and C. P. Wroth, J. Geotech. Eng. Div. 104, 1465 (1978) [Google Scholar]
  89. M. Randolph and C. Wroth, in Behav. Deep Found. (ASTM International, 1979) [Google Scholar]
  90. Y. Chow, Comput. Struct. 24, 157 (1986) [Google Scholar]
  91. M. Randolph and P. Clancy, in edited by V. Impe (Balkema, Rotterdam, 1993), pp. 119–130 [Google Scholar]
  92. M. Randolph, in XIII Int. Conf. Soil Mech. Geotech. Eng. (1994), pp. 61–82 [Google Scholar]
  93. K. Lee and Z. Xiao, Can. Geotech. J. 38, 1063 (2001) [CrossRef] [Google Scholar]
  94. A. Di Donna and L. Laloui, Int. J. Numer. Anal. Methods Geomech. 39, 861 (2014) [Google Scholar]
  95. F. Dupray, C. Li, and L. Laloui, Acta Geotech. 9, 413 (2014) [Google Scholar]
  96. A. F. Rotta Loria, A. Gunawan, C. Shi, L. Laloui, and C. W. Ng, Geomech. Energy Environ. 1, 1 (2015) [CrossRef] [Google Scholar]
  97. A. F. Rotta Loria, A. Di Donna, and L. Laloui, J. Geotech. Geoenvironmental Eng. 141, 04015042 (2015) [CrossRef] [Google Scholar]
  98. A. Di Donna, A. F. Rotta Loria, and L. Laloui, Comput. Geotech. 72, 126 (2016) [Google Scholar]
  99. S. Abdelaziz and T. Y. Ozudogru, Environ. Geotech. 3, 237 (2016) [CrossRef] [Google Scholar]
  100. N. Batini, A. F. Rotta Loria, P. Conti, D. Testi, W. Grassi, and L. Laloui, Appl. Therm. Eng. 86, 199 (2015) [Google Scholar]
  101. F. Cecinato and F. A. Loveridge, Energy 82, 1021 (2015) [CrossRef] [Google Scholar]
  102. K. A. Gawecka, D. M. Taborda, D. M. Potts, W. Cui, L. Zdravković, and M. S. Haji Kasri, Proc. Inst. Civ. Eng.-Geotech. Eng. 1 (2016) [Google Scholar]
  103. M. Barla, A. Di Donna, and A. Perino, Geothermics 61, 104 (2016) [Google Scholar]
  104. P. Buhmann, B. Westrich, C. Moormann, A. Bidarmaghz, and G. Narsilio, in (2016), pp. 601–605 [Google Scholar]
  105. D. Sterpi, A. Coletto, and L. Mauri, Geomech. Energy Environ. 9, 1 (2017) [CrossRef] [Google Scholar]
  106. O. Ogunleye, R. M. Singh, F. Cecinato, and J. Chan Choi, Renew. Energy 146, 2646 (2020) [Google Scholar]
  107. A. Bidarmaghz and G. A. Narsilio, Geomech. Energy Environ. 16, 83 (2018) [CrossRef] [Google Scholar]
  108. B. Cousin, A. F. Rotta Loria, A. Bourget, F. Rognon, and L. Laloui, Tunn. Undergr. Space Technol. 91, 102997 (2019) [Google Scholar]
  109. C. G. Olgun, T. Y. Ozudogru, S. L. Abdelaziz, and A. Senol, Acta Geotech. 10, 553 (2015) [Google Scholar]
  110. A. Bidarmaghz, G. A. Narsilio, I. W. Johnston, and S. Colls, Geomech. Energy Environ. 6, 35 (2016) [CrossRef] [Google Scholar]
  111. T. Bodas Freitas, F. Cruz Silva, and P. Bourne-Webb, in 18th Int. Conf. Soil Mech. Geotech. Eng. (Comité Français de Mécanique des Sols et de Géotechnique, 2013), pp. 3347–3350 [Google Scholar]
  112. A. Mortada, R. Choudhary, and K. Soga, J. Build. Perform. Simul. 11, 517 (2018) [Google Scholar]
  113. J. Epting, M. Baralis, R. Künze, M. H. Mueller, A. Insana, M. Barla, and P. Huggenberger, Geothermics 83, 101734 (2020) [Google Scholar]
  114. M. Barla and A. Di Donna, Undergr. Space 3, 268 (2018) [Google Scholar]
  115. S. Kürten, D. Mottaghy, and M. Ziegler, Energy Build. 107, 434 (2015) [CrossRef] [Google Scholar]
  116. A. Bidarmaghz, G. A. Narsilio, P. Buhmann, C. Moormann, and B. Westrich, Geomech. Energy Environ. 10, 29 (2017) [CrossRef] [Google Scholar]
  117. Y. Rui and M. Yin, Can. Geotech. J. 55, 720 (2017) [CrossRef] [Google Scholar]
  118. D. Rammal, H. Mroueh, and S. Burlon, Renew. Energy 147, 2643 (2020) [Google Scholar]
  119. D. Sterpi, G. Tomaselli, and A. Angelotti, Renew. Energy 147, 2748 (2018) [CrossRef] [Google Scholar]
  120. N. Makasis, G. A. Narsilio, A. Bidarmaghz, I. W. Johnston, and Y. Zhong, Comput. Geotech. 120, 103399 (2020) [CrossRef] [Google Scholar]
  121. J. Claesson and S. Javed, ASHRAE Trans. 118, 530 (2012) [Google Scholar]
  122. M. I. Gorbunov-Posadov and R. V. Serebrjanyi, in 5th Int. Conf. Soil Mech. Found. Eng. (1961), pp. 643– 648 [Google Scholar]
  123. A. F. Rotta Loria, J. V. Català Oltra, and L. Laloui, Comput. Geotech. 120, 103410 (2020) [CrossRef] [Google Scholar]
  124. M. Sutman, G. Olgun, L. Laloui, and T. Brettmann, in Geotech. Front. 2017 (2017), pp. 165–174 [Google Scholar]
  125. P. J. Bourne-Webb, Comput. Geotech. 118, 103309 (2020) [CrossRef] [Google Scholar]
  126. F. Dupray, L. Laloui, and A. Kazangba, Comput. Geotech. 55, 67 (2014) [CrossRef] [Google Scholar]
  127. E. Sailer, D. M. Taborda, and L. Zdravković, Renew. Energy 118, 579 (2018) [CrossRef] [Google Scholar]
  128. E. Sailer, D. M. Taborda, L. Zdravković, and D. M. Potts, Proc. Inst. Civ. Eng.-Geotech. Eng. 1 (2020) [Google Scholar]
  129. A. F. Rotta Loria, F. Orellana, A. Minardi, J.-M. Furbringer, and L. Laloui, Comput. Geotech. 69, 485 (2014) [CrossRef] [Google Scholar]
  130. J. E. Bowles, Foundation Analysis and Design (McGraw-Hill, Singapore: 1988) [Google Scholar]
  131. K. Fleming, A. Weltman, M. Randolph, and K. Elson, Piling Engineering (CRC press, 2008) [CrossRef] [Google Scholar]
  132. D. Salciarini, F. Ronchi, E. Cattoni, and C. Tamagnini, Int. J. Geomech. 15, 04014042 (2015) [CrossRef] [Google Scholar]
  133. D. Salciarini, F. Ronchi, and C. Tamagnini, Acta Geotech. 12, 703 (2017) [Google Scholar]
  134. T. Y. Ozudogru, C. G. Olgun, and C. F. Arson, Geotech. Geol. Eng. 33, 357 (2015) [CrossRef] [Google Scholar]
  135. R. Saggu and T. Chakraborty, Geomech. Geoengin. 10, 10 (2015) [CrossRef] [Google Scholar]
  136. M. Adinolfi, R. M. S. Maiorano, A. Mauro, N. Massarotti, and S. Aversa, Geomech. Energy Environ. 16, 32 (2018) [CrossRef] [Google Scholar]
  137. E. Sailer, D. M. Taborda, L. Zdravković, and D. M. Potts, Comput. Geotech. 109, 189 (2019) [Google Scholar]
  138. R. Saggu and T. Chakraborty, Int. J. Geomech. 16, 04015100 (2016) [CrossRef] [Google Scholar]
  139. A. Vieira and J. R. Maranha, Int. J. Geomech. 17, 04016030 (2016) [CrossRef] [Google Scholar]
  140. C. J. R. Coccia and J. S. McCartney, Comput. Geotech. 80, 16 (2016) [Google Scholar]
  141. P. Bourne-Webb, T. Bodas Freitas, and R. Freitas Assunção, Géotechnique 66, 167 (2016) [CrossRef] [Google Scholar]
  142. A. F. Rotta Loria and L. Laloui, in First Int. Conf. Energy Geotech. ICEGT 2016 (CRC Press, 2016), pp. 171–178 [Google Scholar]
  143. M. Suryatriyastuti, S. Burlon, and H. Mroueh, Int. J. Numer. Anal. Methods Geomech. 40, 3 (2015) [Google Scholar]
  144. C. W. W. Ng, Q. J. Ma, and A. Gunawan, Comput. Geotech. 78, 54 (2016) [Google Scholar]
  145. T. Lambe, Géotechnique 23, 151 (1973) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.