Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 02004
Number of page(s) 7
Section CO2 Sequestration and Deep Geothermal Energy
DOI https://doi.org/10.1051/e3sconf/202020502004
Published online 18 November 2020
  1. T. A. Boden, G. Marland, R. J. Andres. National CO2 emissions from fossil-fuel burning, cement manufacture, and gas flaring: 1751-2014. CDIAC, US DOE (2017) [Google Scholar]
  2. O. (Ed.). Edenhofer. Climate change 2014: mitigation of climate change. CUP 3 (2015) [Google Scholar]
  3. M. J. Bickle. Geological carbon storage. Nat. Geosci. 2, 815 (2009) [Google Scholar]
  4. D. N. Espinoza, S. H. Kim, J. C. Santamarina. CO2 geological storage geotechnical implications. KSCE J CIV ENG 15, 707 (2011) [CrossRef] [Google Scholar]
  5. P. Newell, A. G. Ilgen. Chapter 1 - Overview of Geological Carbon Storage (GCS), Science of Carbon Storage in Deep Saline Formations Elsevier (2019) [Google Scholar]
  6. S. J. Friedmann. Geological carbon dioxide sequestration. Elements 3, 179 (2007) [CrossRef] [Google Scholar]
  7. J. Rutqvist, A. P. Rinaldi, F. Cappa, P. Jeanne, A. Mazzoldi, L. Urpi, Y. Guglielmi, V. Vilarrasa. Fault activation and induced seismicity in geological carbon storage–Lessons learned from recent modeling studies. JRMGE 8, 789 (2016) [Google Scholar]
  8. Z. R. Chong, S. H. B. Yang, P. Babu, P. Linga, X. S. Li. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energy 162, 1633 (2016) [Google Scholar]
  9. S. Y. Lee, G. D. Holder. Methane hydrates potential as a future energy source. Fuel Process. Technol. 71, 181 (2001) [CrossRef] [Google Scholar]
  10. 1J. Zhao, K. Xu, Y. Song, W. Liu, W. Lam, Y. Liu, K. Xue, Y. Zhu, X. Yu, Q.Li. A review on research on replacement of CH4 in natural gas hydrates by use of CO2. Energies 5, 399 (2012) [Google Scholar]
  11. M. Ota, T. Saito, T. Aida, M. Watanabe, Y. Sato, R. L. Smith, H. Inomata. Macro and microscopic CH4– CO2 replacement in CH4 hydrate under pressurized CO2. AIChE J. 53, 2715 (2007) [Google Scholar]
  12. G. Wu, L. Tian, D. Chen, M. Niu, H. Ji. CO2 and CH4 Hydrates: Replacement or Co-growth? J. Phys. Chem. C 123, 13401 (2019) [CrossRef] [Google Scholar]
  13. H. Koide, M. Takahashi, H. Tsukamoto, Y. Shindo. Self-trapping mechanisms of carbon dioxide in the aquifer disposal. Energy Convers. Manag. 36, 505 (1995) [Google Scholar]
  14. C. A. Rochelle, A. P. Camps, D. Long, A. Milodowski, K. Bateman, D. Gunn, P. Jackson, M.A Lovell, J. Rees. Can CO2 hydrate assist in the underground storage of carbon dioxide? Geo. Socity 319, 171 (2009) [Google Scholar]
  15. B. Tohidi, J.Yang, M. Salehabadi, R. Anderson, A. Chapoy. CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2. Environ. Technol. 44, 1509 (2010) [Google Scholar]
  16. M. Yang, Y. Song, X. Ruan, Y. Liu, J. Zhao, Q. Li. Characteristics of CO2 hydrate formation and dissociation in glass beads and silica gel. Energies 5, 925 (2012) [Google Scholar]
  17. J. W. Lee, M. K.Chun, K. M. Lee, Y. J. Kim, H. Lee. Phase equilibria and kinetic behavior of CO2 hydrate in electrolyte and porous media solutions: application to ocean sequestration of CO2. KOREAN J CHEM ENG 19, 673 (2002) [Google Scholar]
  18. P. Mekala, M. Busch, D. Mech, R. S. Patel J. S. Sangwai. Effect of silica sand size on the formation kinetics of CO2 hydrate in porous media in the presence of pure water and seawater relevant for CO2 sequestration. J PETROL SCI ENG 122, 1 (2014) [CrossRef] [Google Scholar]
  19. C. Cheng, J. Zhao, Y. Song, Z. Zhu, W. Liu, Y. Zhang, M. Yang, X. Yu. In-situ observation for formation and dissociation of carbon dioxide hydrate in porous media by magnetic resonance imaging. Sci. China Earth Sci. 56, 611 (2013) [Google Scholar]
  20. M. Yang, Y. Song, Y. Liu, W. H. Lam, Q. J. Li. Equilibrium conditions for CO2 hydrate in porous medium. Chem. Thermodyn. 43, 334 (2011) [CrossRef] [Google Scholar]
  21. X. Liu, P. B. Flemings. Capillary effects on hydrate stability in marine sediments. J. Geophys. Res. Solid Earth. 116, B7 (2011) [Google Scholar]
  22. M. M. Roozbahani, R. Borela, J. D. Frost. Pore size distribution in granular material microstructure. Materials 10, 1237 (2017) [CrossRef] [Google Scholar]
  23. S. Zhou, Y. Yu, M. Zhao, S. Wang, G.Z. Zhang. Effect of graphite nanoparticles on promoting CO2 hydrate formation. ENERG FUEL 28, 4694 (2014) [CrossRef] [Google Scholar]
  24. H. Najibi, M. M. Shayegan, H. Heidary. Experimental investigation of methane hydrate formation in the presence of copper oxide nanoparticles and SDS. J. Nat. Gas Sci. and Eng. 23, 315 (2015) [CrossRef] [Google Scholar]
  25. M. Yang, J. Zhao, J. N. Zheng, Y. Song. Hydrate reformation characteristics in natural gas hydrate dissociation process: A review. Appl. Energy 256, 113878 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.