Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 02005
Number of page(s) 7
Section CO2 Sequestration and Deep Geothermal Energy
DOI https://doi.org/10.1051/e3sconf/202020502005
Published online 18 November 2020
  1. Hangx, S., van der Linden, A., Marcelis, F., & Bauer, A. The effect of CO2 on the mechanical properties of the Captain Sandstone: Geological storage of CO2 at the Goldeneye field (UK). Int J Greenhouse Gas Control 19, 609-619, (2013) [CrossRef] [Google Scholar]
  2. M. Jafari, & J. Jung. Variation of Contact Angles in Brine/CO2/Mica System considering Short-Term Geological CO2 Sequestration Condition. Geofluids, Article ID 3501459, (2018) [Google Scholar]
  3. D. Y. Leung, G. Caramanna, & M. M. Maroto-Valer. An overview of current status of carbon dioxide capture and storage technologies. Renewable Sustainable Energy Rev. 39, 426-443 (2014) [CrossRef] [Google Scholar]
  4. F. Huq, S. B. Haderlein, O. A. Cirpka, M. Nowak, P. Blum, & P. Grathwohl. Flow-through experiments on water–rock interactions in a sandstone caused by CO2 injection at pressures and temperatures mimicking reservoir conditions. Appl. Geochem 58, 136-146 (2015) [Google Scholar]
  5. Z. Dai, H. Viswanathan, T. Xiao, R. Middleton, F. Pan, W. Ampomah, C. Yang, Y Zhou, W. Jia, S.Y. Lee, and M. Cather. CO2 sequestration and enhanced oil recovery at depleted oil/gas reservoirs. Energy Procedia 114, 6957-6967 (2017) [Google Scholar]
  6. N. K. Ravi, M. V. S. Annaland, J. C. Fransoo, J. C. Grievink, & E. Zondervan. Development and implementation of supply chain optimization framework for CO2 capture and storage in the Netherlands. Comput. Chem. Eng 102, 40-51 (2017) [Google Scholar]
  7. E. J. Kutsienyo, W. Ampomah, Q. Sun, R. S. Balch, J. You, W. N. Aggrey, & M. Cather. Assessment of Enhanced Oil Recovery and CO Storage Capacity Using Machine Learning and Optimization Framework. SPE Europec featured at 81st EAGE Conference and Exhibition (2019) [Google Scholar]
  8. M. Jafari, S. C., Cao, & J. Jung. Geological CO2 sequestration in saline aquifers: Implication on potential solutions of China’s power sector. Resour. Conserv. Recycl 121, 137-155 (2017) [Google Scholar]
  9. T. D. Rathnaweera, P. G. Ranjith, M. S. A. Perera, A. Haque, A. Lashin, N. Al Arifi, & E. Yasar. CO2-induced mechanical behaviour of Hawkesbury sandstone in the Gosford basin: An experimental study. Mater. Sci. Eng A, 641, 123-137 (2015) [CrossRef] [Google Scholar]
  10. R. Zhang, & Y. S. Wu. Hydrologic, Mechanical, Thermal, and Chemical Process Coupling Triggered by the Injection of CO2. In Science of Carbon Storage in Deep Saline Formations, 361-381, (2019) [Google Scholar]
  11. J. Rohmer, A. Pluymakers, & F. Renard. Mechano-chemical interactions in sedimentary rocks in the context of CO2 storage: Weak acid, weak effects?. Earth Sci. Rev 157, 86-110 (2106) [Google Scholar]
  12. A. G. Ilgen, & R. T. Cygan. Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis. Int J Greenhouse Gas Control, 44, 166-174 (2016) [CrossRef] [Google Scholar]
  13. B. Lamy‐Chappuis, D. Angus, Q. Fisher, C. Grattoni, & B. W. Yardley. Rapid porosity and permeability changes of calcareous sandstone due to CO2‐enriched brine injection. Geophys. Res. Lett 41(2), 399-406 (2014) [Google Scholar]
  14. R. G. Bruant, J. Jr, M. A. Celia, A. J. Guswa, & C. A. Peters. Peer reviewed: Safe storage of CO2 in deep saline aquifiers. Environ. Sci. Tech 36(11), 240A-245A (2002) [CrossRef] [Google Scholar]
  15. T. D. Rathnaweera, P. G. Ranjith, M. S. A. Perera, W. A. M. Wanniarachchi, & K. M. A. S. Bandara. Stress state and stress path evaluation to address uncertainties in reservoir rock failure in CO2 sequestration in deep saline aquifers: An experimental study of the Hawkesbury sandstone formation. J. CO2 Util 26, 184-201 (2018) [CrossRef] [Google Scholar]
  16. Nasvi, M. C. M., Ranjith, P. G., Sanjayan, J., & Haque. Sub-and super-critical carbon dioxide permeability of wellbore materials under geological sequestration conditions: An experimental study. Energy 54, 231-239 (2013) [CrossRef] [Google Scholar]
  17. S. Vialle, & T. Vanorio. Laboratory measurements of elastic properties of carbonate rocks during injection of reactive CO2‐saturated water. Geophys. Res. Lett 38 (1) (2011) [Google Scholar]
  18. I. Falcon‐Suarez, J. Canal‐Vila, J. Delgado‐Martin, L. North, & A. Best. Characterisation and multifaceted anisotropy assessment of Corvio sandstone for geological CO2 storage studies. Geophys. Prospect 65(5), 1293-1311 (2017) [Google Scholar]
  19. H. Marbler, K. P. Erickson, M. Schmidt, C. Lempp, & H. Pöllmann. Geomechanical and geochemical effects on sandstones caused by the reaction with supercritical CO2: an experimental approach to in situ conditions in deep geological reservoirs. Environ. Earth Sci 69, 1981–1998 (2013) [Google Scholar]
  20. B. Lamy-Chappuis, D. Angus, Q. J. Fisher, & B. W. Yardley. Shale-brine-CO2 interactions and the long-term stability of carbonate-rich shale caprock. Int. J. Greenhouse Gas Control 52, 84-95 (2016) [CrossRef] [Google Scholar]
  21. Z. Wu, A. Luhmann, A. Rinehart, P. Mozley, T. Dewers, J. Heath, & B. Majumdar. Controls of Cement Texture and Composition on Sandstone Mechanical Property Changes From Reaction With CO2-Rich Brine. In AAPG ACE (2018) [Google Scholar]
  22. Z. Shi, L. Sun, I. Haljasmaa, W. Harbert, S. Sanguinito, M. Tkach, A. Goodman, T.T. Tsotsis, & K. Jessen. Impact of Brine/CO2 exposure on the transport and mechanical properties of the Mt Simon sandstone. J Petr. Sci 177, 295-305 (2019) [CrossRef] [Google Scholar]
  23. A. Kamali-Asl, B. Kc, M. Foroutan, E. Ghazanfari, T. T. Cladouhos, & M. Stevens. Stress-strain response and seismic signature analysis of phyllite reservoir rocks from Blue Mountain geothermal field. Geothermics 77, 204-223 (2019) [Google Scholar]
  24. R. Villamor Lora, E. Ghazanfari, & E. Asanza Izquierdo. Geomechanical characterization of Marcellus shale. Rock Mech. Rock Eng 49, 3403– 3424 (2016) [Google Scholar]
  25. A. Kamali-Asl, E. Ghazanfari, A. Hedayat, & L. Deering. Investigation of static/dynamic moduli and plastic response of shale specimens. Int. J. Rock Mech. Min. Sci 110, 231-245 (2018) [CrossRef] [Google Scholar]
  26. B. Amadei, & O. Stephansson. Rock stress and its measurement. Springer Science & Business Media (1997) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.