Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 03005
Number of page(s) 10
Section Hydraulic Fracturing and Unconventional Hydrocarbons
DOI https://doi.org/10.1051/e3sconf/202020503005
Published online 18 November 2020
  1. M. Wigwe, O. Kolawole, M. Watson, I. Ispas, W. Li. Influence of Fracture Treatment Parameters on Hydraulic Fracturing Optimization in Unconventional Formations. American Rock Mechanics Association, ARMA-CUPB-19-3666 (2019). [Google Scholar]
  2. O. Kolawole, S. Esmaeilpour, R. Hunky, L. Saleh, H.K. Ali-Alhaj, M. Marghani. Optimization of Hydraulic Fracturing Design in Unconventional Formations: Impact of Treatment Parameters. Society of Petroleum Engineers (2019). https://doi.org/10.2118/198031-MS. [Google Scholar]
  3. O. Kolawole, I. Ispas. Interaction between hydraulic fractures and natural fractures: current status and prospective directions. Journal of Petroleum Exploration and Production Technology, 10:1613– 1634 (2020). https://doi.org/10.1007/s13202-019-00778-3. [Google Scholar]
  4. O. Kolawole, I. Ispas. How Hydraulic Fractures Interact with Natural Fractures: A Review and New Observations. American Rock Mechanics Association, ARMA-2019-0018 (2019). [Google Scholar]
  5. M. Thiercelin, R.G. Jeffrey, K.B. Naceur. Influence of Fracture Toughness on the Geometry of Hydraulic Fractures. Society of Petroleum Engineers (1989). https://doi.org/10.2118/16431-PA. [Google Scholar]
  6. A.-T. Akono, F.-J. Ulm. Scratch test model for the determination of fracture toughness. Engineering Fracture Mechanics, 78:334–342 (2011). https://doi.org/10.1016/j.engfracmech.2010.09.017. [Google Scholar]
  7. J.-S. Lin, Y. Zhou. Can scratch tests give fracture toughness?. Engineering Fracture Mechanics, 109:161–168 (2013). https://doi.org/10.1016/j.engfracmech.2013.06.002. [Google Scholar]
  8. J.-L. Le, E. Detournay. Discussion on the “Fracture mechanics interpretation of the scratch test” by Akono et al. Engineering Fracture Mechanics, 168(A):46-50 (2016). https://doi.org/10.1016/j.engfracmech.2016.09.010. [Google Scholar]
  9. S. Al Wakeel, M.H. Hubler. Introducing Heterogeneity into the Micro-Scratch Test Fracture Toughness Relation for Brittle Particle Composites. Exp Mech, 58: 1237 (2018). https://doi.org/10.1007/s11340-018-0408-1. [Google Scholar]
  10. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J Am Ceram Soc, 64(9):533–538 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x. [Google Scholar]
  11. I. Larsen, L. Li, R.M. Holt. Estimation of Intergranular Bond Strengths by Core Scratching: A Comparison Between A Laboratory Experiment and A Numerical Discrete Particle Simulation. American Rock Mechanics Association (2004). [Google Scholar]
  12. F.-J. Ulm, S. James. The scratch test for strength and fracture toughness determination of oil well cements cured at high temperature and pressure. Cement and Concrete Research, 41(9):942-946 (2011). https://doi.org/10.1016/j.cemconres.2011.04.014. [Google Scholar]
  13. A.-T. Akono, N.F. Randall, F.-J. Ulm. Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals. Journal of Materials Research, 27(2):485-493 (2012). https://doi.org/10.1557/jmr.2011.402. [Google Scholar]
  14. R. Sola, R. Giovanardi, G. Parigi, P.A. Veronesi. Novel Methods for Fracture Toughness Evaluation of Tool Steels with Post-Tempering Cryogenic Treatment. Metals, 7: 75 (2017). https://doi.org/10.3390/met7030075. [Google Scholar]
  15. F. Pöhl, S. Schwarz, P. Junker, K. Hackl, W. Theisen. Indentation and scratch testing – experiment and simulation. International Conference on Stone and Concrete Machining (ICSCM), 3:292-308 (2015). https://doi.org/10.13154/icscm.3.2015.292-308. [Google Scholar]
  16. D. Beegan, S. Chowdhury, M.T. Laugier. Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates. Surf. Coat. Technol., 201:5804-5808 (2007). [Google Scholar]
  17. V. Jardret, H. Zahouani, J.L. Loubet, T.G. Mathia. Understanding and quantification of elastic and plastic deformation during a scratch test. Wear, 218:8-14 (1998). https://doi.org/10.1016/S0043-1648(98)00200-2. [Google Scholar]
  18. E. Felder, J.L. Bucaille. Chapter 2 Mechanical analysis of the scratching of metals and polymers at moderate and large strains. Tribol. Interface. Eng. Ser., 51:22-55 (2006). https://doi.org/10.1016/S0167-8922(06)80038-6. [CrossRef] [Google Scholar]
  19. O. Borrero-López, M. Hoffman, A. Bendavid, P.J. Martin. The use of the scratch test to measure the fracture strength of brittle thin films. Thin Solid Films, 518:4911-4917 (2010). [Google Scholar]
  20. R. Lach, L.A. Gyurova, W. Grellmann. Application of indentation fracture mechanics approach for determination of fracture toughness of brittle polymer systems. Polym Test, 26(1):51–59 (2007). https://doi.org/10.1016/j.polymertesting.2006.08.006. [Google Scholar]
  21. W. Brostow, W. Chonkaew, R. Mirshams, A. Srivastava. Characterization of grooves in scratch resistance testing. Polym. Eng. Sci., 48:2060-2065 (2008). https://doi.org/10.1002/pen.21085. [Google Scholar]
  22. A.-T. Akono, F.-J. Ulm. An improved technique for characterizing the fracture toughness via scratch test experiments. Wear, 313:117–124 (2014). https://doi.org/10.1016/j.engfracmech.2010.09.017. [Google Scholar]
  23. W. Brostow, W. Chonkaew, L. Rapoport, Y. Soifer, A. Verdyan. Grooves in scratch testing. J. Mater. Res., 22:2483–2487 (2007). https://doi.org/10.1557/jmr.2007.0307. [Google Scholar]
  24. M.M. Hossain, R. Minkwitz, P. Charoensirisomboon, H.-J. Sue. Quantitative modeling of scratch-induced deformation in amorphous polymers. Polymer, 55 (23):6152-6166 (2014). [Google Scholar]
  25. N.X. Randall, G. Favaro, C.H. Frankel. The effect of intrinsic parameters on the critical load as measured with the scratch test method. Surf Coat Technol, 137:146–151 (2001). https://doi.org/10.1016/S0257-8972(00)01097-5. [Google Scholar]
  26. D. Martogi, S. Abedi, S. Crystal, I. Mitchell. Mechanical Properties of Drill Cuttings Based on Indentation Testing and Contact Mechanics Solutions. Society of Petroleum Engineers (2019). https://doi.org/10.2118/196214-MS. [Google Scholar]
  27. K. Liu, M. Ostadhassan, B. Bubach. Applications of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks. J. Nat. Gas Sci. Eng., 35(A):1310-1319. https://doi.org/10.1016/j.jngse.2016.09.068. [Google Scholar]
  28. Q. Zeng, Y. Feng, S. Xu. A discussion of “Application of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks” by K Liu, M Osatadhassan and B Bubach. J. Nat. Gas Sci. Eng. 42 187-189 (2017). https://doi.org/10.1016/j.jngse.2017.02.027. [Google Scholar]
  29. P. Chen, Q. Han, T. Ma, D. Lin. The mechanical properties of shale based on micro-indentation test. PETROL. EXPLOR. DEVELOP., 42(5):723–732 (2015). https://doi.org/10.1016/S1876-3804(15)30069-0. [CrossRef] [Google Scholar]
  30. X. Su, P. Chen, T. Ma. Evaluation of shale fracture toughness based on micrometer indentation test. Petroleum, 5(1):52-57 (2018). https://doi.org/10.1016/j.petlm.2018.05.005. [CrossRef] [Google Scholar]
  31. A.-T. Akono, P. Kabir. Microscopic fracture characterization of gas shale via scratch testing. Mechanics Research Communications, 78:86-92 (2016). https://doi.org/10.1016/j.mechrescom.2015.12.003. [Google Scholar]
  32. E. Broch, J.A. Franklin. Point-Load Strength Test. International J. Rock Mechanics & Mining Sci., 9(6):669-676 (1972). http://dx.doi.org/10.1016/0148-9062(72)90030-7. [CrossRef] [Google Scholar]
  33. Z.T. Bieniawski. The Point Load Test in Geotechnical Practice. Eng. Geology, 9:1-11 (1975). http://dx.doi.org/10.1016/0013-7952(75)90024-1. [CrossRef] [Google Scholar]
  34. J.S. Lee, J. Kieschnick, C. Geyer, J. Brumley, L. DeSpain. Comparison of Different Methods to Estimate Uniaxial Compressive Strength in a Barnett Shale. American Rock Mechanics Association (2016). [Google Scholar]
  35. Papworths Construction Testing Equipment (PCTE), Equotip 3 - Non-destructive test for rock UCS. Equotip–3 for Rock Brochure 1–2. [Google Scholar]
  36. W. Verwall, & A. Mulder, Rock and aggregate laboratory manual, 13-14. Geotechnical Laboratory DGM, Thimphu Bhutan (2000). [Google Scholar]
  37. J.S. Lee. Calibration of rebound hardness numbers to UCS in shale formations. J. Petrol. Tech., 67(1):41-45 (2015). https://doi.org/10.2118/0115-0041-JPT. [CrossRef] [Google Scholar]
  38. J.S. Lee, L. Smallwood, E. Morgan. New Application of Rebound Hardness Numbers to Generate Logging of Unconfined Compressive Strength in Laminated Shale Formations. American Rock Mechanics Association (2014). [Google Scholar]
  39. A. Aydin, A. Basu. The Schmidt Hammer in Rock Material Characterization. Eng. Geology, 81(1):1-14 (2005). http://dx.doi.org/10.1016/j.enggeo.2005.06.006. [CrossRef] [Google Scholar]
  40. C. Germay, T. Richard. The Scratch Test: A High Resolution Log of Rock Strength with Application to Geomechanic and Petrophysic. Society of Petrophysicists and Well-Log Analysts (2014). [Google Scholar]
  41. D. Gokaraju, S. Govindarajan, A. Mitra, M. Aldin, R. Patterson. Evaluation of Fracture Toughness and Its Impact on Hydraulic Fracturing. American Rock Mechanics Association, (2017). [Google Scholar]
  42. R. Sierra, M. H. Tran, Y. N. Abousleiman, R. M. Slatt. Woodford Shale Mechanical Properties and the Impacts of Lithofacies. American Rock Mechanics Association (2010). [Google Scholar]
  43. M. Chandler, P. Meredith, B. Crawford. Experimental determination of the fracture toughness the Mancos shale, Utah. Geophys. Res. Abstr., 15, EGU2013-1331 (2013). https://doi.org/10.3997/2214-4609.20130286. [Google Scholar]
  44. D. Moronkeji, R. Villegas, R. Shouse, U. Prasad. Rock strength prediction during coring operation. In Proc. of International Symposium of the Society of Core Analysts, SCA2017-048 (2017). [Google Scholar]
  45. F. Dagrain, C. Germay. Fields applications for the scratching tests. In Proc. of the Eurock 2006: Multiphysics Coupling and Long Term Behaviour in Rock Mechanics, 571–576 (2006). [Google Scholar]
  46. T. Richard, F. Dagrain, E. Poyol, E. Detournay. Rock strength determination from scratch tests. Eng. Geol., 147-148:91-100 (2012). https://doi.org/10.1016/j.enggeo.2012.07.011. [Google Scholar]
  47. F. Dagrain, T. Richard, C. Germay. The Rock Strength Device : A scratching apparatus to determine rock properties. The 7th National Congress on theoretical and applied Mechanics NCTAM (2006). [Google Scholar]
  48. S. Mitaim, F. Dagrain, T. Richard, E. Detournay, A. Drescher. A novel apparatus to determine the rock strength parameters. In Proc. of the 9th National Convention on Civil Engineering, Thailand (2004). [Google Scholar]
  49. C. Coudyzer, E. Poyol, P. Bette, F. Dagrain. Measure of rock mechanical properties from scratching test. AAPG International Conferences and Exhibition (2005). [Google Scholar]
  50. C. Germay, T. Richard, E. Mappanyompa, C. Lindsay, D. Kitching, A. Khaksar. The Continuous-Scratch Profile: A High-Resolution Strength Log for Geomechanical and Petrophysical Characterization of Rocks. Society of Petroleum Engineers (2015). https://doi.org/10.2118/174086-PA. [Google Scholar]
  51. C. Germay, T. Lhomme, C. McPhee, G. Daniels. An Objective Review of Non-Destructive Methods for the Direct Testing of Strength on Rock Cores. American Rock Mechanics Association (2018). [Google Scholar]
  52. G. Schei, E. Fjær, E. Detournay, C.J. Kenter, G.F. Fuh, F. Zausa. The Scratch Test: An Attractive Technique for Determining Strength and Elastic Properties of Sedimentary Rocks. Society of Petroleum Engineers (2000). https://doi.org/10.2118/63255-MS. [Google Scholar]
  53. X. He, C. Xu. Determining Strength and Fracture Toughness of Rock from Scratch Tests. International Society for Rock Mechanics and Rock Engineering (2015). [Google Scholar]
  54. J.I. Adachi, E. Detournay, A. Drescher. Determination of Rock Strength Parameters from Cutting Tests. American Rock Mechanics Association (1996). [Google Scholar]
  55. E. Detournay, A. Drescher, and D.A. Hultman. United States Patent 5670711 (1997). [Google Scholar]
  56. J.I. Adachi, Detournay E., Drescher A. Determination of rock strength parameters from cutting tests, rock mechanics tools and techniques. In Proc. of 2nd North American Rock Mechanics Symposium (NARMS 1996), Montreal, 1517-1523 (1996). [Google Scholar]
  57. C. Germay, C. Coudyzer, E. Poyol, F. Dagrain. Measure of rock mechanical properties from cutting test. McMat 2005 Mechanics & Materials conference, June 1-3, Baton Rouge, Louisiana, USA (2005). [Google Scholar]
  58. F. Dagrain, E. Poyol, T. Richard. Strength Logging of Geomaterials from Scratch Tests. In Schubert (ed.) Proceedings of ISRM Regional Symposium EUROCK 2004 and 53rd Geomechanics Colloquium (2004). [Google Scholar]
  59. Epslog S.A. Wombat Machine, The Wombat Automated Apparatus and Software (2019). [Google Scholar]
  60. R. Suarez-Rivera, J. Stenebråten, F. Dagrain. Continuous scratch testing on core allows effective calibration of log-derived mechanical properties for use in sanding prediction evaluation. Society of Petroleum Engineers (2002). https://doi.org/10.2118/78157-MS. [Google Scholar]
  61. J. Chen, Y. Feng, Y. Zeng, Y. Han, Y. Wang, C. Niu. Continuous rock drillability measurements using scratch tests. Journal of Petroleum Science and Engineering, 159:783-790 (2017). https://doi.org/10.1016/j.petrol.2017.08.030. [CrossRef] [Google Scholar]
  62. TerraTek Mechanical Properties Profile Service. Schlumberger (2014). [Google Scholar]
  63. I. Ali, M.N.J. Al Awad. Applications of Rock Scratching Tests in Borehole Instability. American Rock Mechanics Association (2014). [Google Scholar]
  64. A. Naeimipour, J. Rostami, I.S. Buyuksagis, O. Frough. Estimation of rock strength using scratch test by a miniature disc cutter on rock cores or inside boreholes. Int J Rock Mech Min Sci, 10:9-18 (2018). [CrossRef] [Google Scholar]
  65. E. Detournay, P. Defourny. A phenomenological model for the drilling action of drag bits. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 29 (1) 13–23 (1992). https://doi.org/10.1016/0148-9062(92)91041-3. [CrossRef] [Google Scholar]
  66. F.H. Ferreira, C. Germay, E.S.R. Santos, D.F. Rossi. From Lab to Field: Rock Mechanics Properties Assessment for a 3D MEM. American Rock Mechanics Association (2017). [Google Scholar]
  67. C. Fairhurst. The Scratch Test - An Innovative and Inexpensive Method to Determine the Compressive Strength and Mohr-Coulomb Failure Envelope for Sedimentary Rock. International Society for Rock Mechanics and Rock Engineering (2014). [Google Scholar]
  68. A. Naeimipour, J. Rostami, E. Keller, O. Frough, S. Wang. Estimation of Rock Strength by Means of Scratch Probe. American Rock Mechanics Association (2015). [Google Scholar]
  69. A.J. Gonzalez-Garcia. Rock Strength and Failure: Some Common and Uncommon Issues. International Society for Rock Mechanics and Rock Engineering (2011). [Google Scholar]
  70. E. Hoek, E.T. Brown. Brown Underground excavations in rock. London: Instn Min. Metall. (1980). [Google Scholar]
  71. E. Hoek, E.T. Brown. Empirical strength criterion for rock masses. Journal Geotechnical Engineering Division, ASCE 106(GT9):1013-1035 (1980). [Google Scholar]
  72. E. Hoek, Practical Rock Engineering - An Ongoing Set of Notes (2007). [Google Scholar]
  73. J.A. Williams. Analytical models of scratch hardness. Tribol. Int., 29 (8) 675–694 (1996). [Google Scholar]
  74. A.-T. Akono, F.-J. Ulm, Z.P. Bažant. Discussion: Strength-to-fracture scaling in scratching. Engineering Fracture Mechanics, 119 21–28 (2014). https://doi.org/10.1016/j.engfracmech.2014.02.025. [Google Scholar]
  75. H.H. Laubie. Linear Elastic Fracture Mechanics in Anisotropic Solids: Application to Fluid-Driven Crack Propagation. Master thesis, Massachusetts Institute of Technology (2013). [Google Scholar]
  76. H. Laubie, F.-J. Ulm. Plane-strain crack problem in transversely isotropic solids for hydraulic fracturing applications. J. Eng. Mech., 140(12):04014092 (2014). http://ascelibrary.org/doi/full/10.1061/(ASCE)EM.1943-7889.0000807. [Google Scholar]
  77. M. A. Ante, G. L. Manjunath, F. Aminzadeh, B. Jha. Microscale Laboratory Studies for Determining Fracture Directionality in Tight Sandstone and Shale During Hydraulic Fracturing. Unconventional Resources Technology Conference (2018). https://doi.org/10.15530/URTEC-2018-2903021. [Google Scholar]
  78. L.A. Hernandez-Uribe, M. Aman, D.N. Espinoza. Assessment of Mudrock Brittleness with Micro-scratch Testing. Rock Mech Rock Eng., 50:2849 (2017). https://doi.org/10.1007/s00603-017-1279-y. [Google Scholar]
  79. I.H. Michaels, M. Mostofi, T. Richard. An Experimental Study of the Wear of Polycrystalline Diamond Compact Bits. American Rock Mechanics Association (2019). [Google Scholar]
  80. M.T. Nguyen, T. Worku, W.P. Mitchell, M.R. Lakshmikantha, M. Hegazy. An Integrated Approach Using Geomechanics and Advanced Rock Characterization Technics to Optimize Reservoir Productivity and Stimulation Design. Society of Petroleum Engineers (2014). https://doi.org/10.2118/169915-MS. [Google Scholar]
  81. P. Cerasi, I. Larsen, J.F. Stenebråten, E.F. Sonstebo. Scratch testing of drilling mud filter cakes. Society of Petroleum Engineers (2006). https://doi.org/10.2118/100130-MS. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.