Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 03004
Number of page(s) 5
Section Hydraulic Fracturing and Unconventional Hydrocarbons
DOI https://doi.org/10.1051/e3sconf/202020503004
Published online 18 November 2020
  1. C. Miehe, F. Welschinger, M. Hofacker, Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations, Int. J. Numer. Methods Eng. 82, 1273-1311 (2010) [Google Scholar]
  2. M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Eng. 217-220, 77-95 (2012) [Google Scholar]
  3. R.J. Geelen, Y. Liu, T. Hu, M.R. Tupek, J.E. Dolbow, A phase-field formulation for dynamic cohesive fracture, Comput. Methods Appl. Mech. Eng. 348, 680-711 (2019) [Google Scholar]
  4. S. Lee, M.F. Wheeler, T. Wick, Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model, Comput. Methods Appl. Mech. Eng. 305, 111-132 (2016) and gas reservoirs, Geophysics 84, B461-B469 (2019) [Google Scholar]
  5. W.L. Ellsworth, Injection-induced Earthquakes, Science, 341, 1225942 (2013) [Google Scholar]
  6. K. Hoshino, H. Koide, K. Inami, S. Iwamura, S. Mitsui, Mechanical properties of Japanese tertiary sedimentary rocks under high confining pressures, Geol. Surv. Japan 53, 229 (1972) [Google Scholar]
  7. J. Choo, W. Sun, Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow, Comput. Methods Appl. Mech. Eng. 330, 1-32 (2018) [Google Scholar]
  8. F. Fei, J. Choo, A phase-field method for modeling cracks with frictional contact, Int. J. Numer. Methods Eng. 121, 740-762 (2020) [Google Scholar]
  9. J.M. Ramsey, F.M. Chester, Hybrid fracture and the transition from extension fracture to shear fracture, Nature, 428, 63-66 (2004) [Google Scholar]
  10. J.C. Simo, T. Laursen, An augmented Lagrangian treatment of contact problems involving friction, Comput. Struct. 42, 97-116 (1992) [Google Scholar]
  11. J.T. Oden, E.B. Pires, Algorithms and numerical results for finite element approximations of contact problems with non-classical friction laws, Comput. Struct. 19, 137-147 (1984) [Google Scholar]
  12. R.I. Borja, Assumed enhanced strain and the extended finite element methods: A unification of concepts, Comput. Methods Appl. Mech. Eng. 197 2789-2803 (2008) [Google Scholar]
  13. J. Choo, S. Lee, Enriched Galerkin finite elements for coupled poromechanics with local mass conservation, Comput. Methods Appl. Mech. Eng. 341 311-332 (2018) [Google Scholar]
  14. J. Choo, Large deformation poromechanics with local mass conservation: An enriched Galerkin finite element framework, Int. J. Numer. Methods Eng. 116 66-90 (2018) [Google Scholar]
  15. J. Choo, Stabilized mixed continuous/enriched Galerkin formulations for locally mass conservative poromechanics, Comput. Methods Appl. Mech. Eng. 357 112568 (2019) [Google Scholar]
  16. Y. Zhao, J. Choo, Stabilized material point methods for coupled large deformation and fluid flow in porous materials, Comput. Methods Appl. Mech. Eng. 362, 112742 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.