Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 04012
Number of page(s) 7
Section Thermo-Hydro-Mechanical Properties of Geomaterials
DOI https://doi.org/10.1051/e3sconf/202020504012
Published online 18 November 2020
  1. H. Kyokawa, S. Ohono and I. Kobayashi, A method for extending a general constitutive model to consider the electro ‐ chemo ‐ mechanical phenomena of mineral crystals in expansive soils, Int. J. Numer. Anal. Met., 1-23 (2020) [Google Scholar]
  2. A. Lloret, M.V. Villar, M. Sànchez, A. Gens, X. Pintado and E. E. Alonso, Mechanical behaviour of heavily compacted bentonite under high suction changes, Géotech., 53, 27-40 (2003) [Google Scholar]
  3. D. Mašín, Double structure hydromechanical coupling formalism and a model for unsaturated expansive clays, Eng. Geol., 165, 73-88 (2013) [Google Scholar]
  4. T.L.T. Zhan and W.W. Ng, Shear strength characteristics of an unsaturated expansive clay, Can. Geotech. J., 43, 751-763 (2006) [CrossRef] [Google Scholar]
  5. E. Romero, A microstructural insight into compacted clayey soils and their hydraulic properties, Eng. Geol., 165, 3-19 (2013) [Google Scholar]
  6. M. Kikumoto, H. Kyokawa, T. Nakai and H.M. Shahin, A simple elasto–plastic model for unsaturated soils and interpretations of collapse and compaction behaviours, Proc. 5th International Conf. on Unsaturated Soils (UNSAT 2010), 849-855 (2010) [Google Scholar]
  7. E.E. Alonso, J.-M. Pereira, J. Vaunat and S. Olivella, A microstructurally based effective stress for unsaturated soils, Géotech., 60, 913-925 (2010) [Google Scholar]
  8. D. Mašín and H. Khalili, Swelling phenomena and effective stress in compacted expansive clays, Can. Geotech. J., 53, 134-147 (2016) [CrossRef] [Google Scholar]
  9. T. Nakai and M. Hinokio, A simple elastoplastic model for normally and over consolidated soils with unified material parameters, S&F, 44, 53-70 (2004) [CrossRef] [Google Scholar]
  10. R.N. Yong, Soil suction and soil-water potentials in swelling clays in engineered clay barriers, Eng. Geol., 54, 3-13 (1999) [Google Scholar]
  11. H. Komine and N. Ogata, Prediction for swelling characteristics of compacted bentonite, Can. Geotech. J., 33, 11-22 (1996) [CrossRef] [Google Scholar]
  12. H.B.G. Casimir and D. Polder, The influence of retardation on the London-van der Waals forces, Physical Reviews, 73, 360-372 (1948) [CrossRef] [Google Scholar]
  13. S. Afzal, W.J. Tesler, S.K. Blessing, J.M. Collins, and L.J. Lis, Hydration force between phosphatidylcholine surfaces in aqueous electrolyte solutions, J. Col. & Inter. Sci., 97, 303-307 (1983) [CrossRef] [Google Scholar]
  14. M.T., van Genuchten, A closed form equation for predicting the hydraulic conductivity of unsaturated soil, Soil Sci. Society of America J., 44, 892–898 (1980) [Google Scholar]
  15. A. Seiphoori, A. Ferrari and L. Laloui, Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles, Géotech., 64, 721-734 (2014) [Google Scholar]
  16. V. Merchán, J. Vaunat, E. Romero and T. Meca, Experimental study of the influence of suction on the residual friction angle of clays, Proc. 1st European Conference on Unsaturated Soils, 423-428 (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.