Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 05002
Number of page(s) 6
Section Issues Related to Energy Piles
DOI https://doi.org/10.1051/e3sconf/202020505002
Published online 18 November 2020
  1. Akrouch, G.A., M. Sánchez, and J.L. Briaud. Effect of the unsaturated soil condition on the thermal efficiency of energy piles. IFCEE 2015, 1618-1627. (2015). [Google Scholar]
  2. Barnard, A.C.L., W.A. Hunt, W.P. Timlake, and E. Varley. A theory of fluid flow in compliant tubes. Biophysical Journal 6, (6): 717-724. (1966). [CrossRef] [PubMed] [Google Scholar]
  3. Başer, T., Y. Dong, A.M. Moradi, N. Lu, K. Smits, S. Ge, and J.S. McCartney, Role of nonequilibrium water vapor diffusion in thermal energy storage systems in the vadose zone. Journal of Geotechnical and Geoenvironmental Engineering, 144(7), (2018). [Google Scholar]
  4. Bear, J. Dynamics of fluids in porous media, 764. Mineola, NY: Dover. (1972). [Google Scholar]
  5. Bear, J., J. Bensabat, and A. Nir, Heat and mass transfer in unsaturated porous-media at a hot boundary. One-dimensional analytical model, Transp. Porous Media, 6, 281–298. (1991). [Google Scholar]
  6. Behbehani, F. and J.S. McCartney. Impacts of unsaturated conditions on the ultimate capacity of energy piles. EUnsat 2020: The 4th European Conference on Unsaturated Soils. Lisbon, Portugal. Jun. 24-26. pp. 1-6. (2020). [Google Scholar]
  7. Bixler, N.E., NORIA A finite element computer program for analyzing water, vapor, air, and energy transport in porous media, Rep. SAND84-2057, UC-70, Sandia Natl. Lab., Albuquerque, N. M. (1985). [Google Scholar]
  8. Bourne‐Webb, P. Observed response of energy geostructures. Energy geostructures: Innovation in Underground Engineering, 45-77. (2013). [Google Scholar]
  9. Campbell G.S. Soil Physics with BASIC: Transport Models for Soil–Plant Systems. New York: Elsevier. (1985). [Google Scholar]
  10. Cass A., G.S. Campbell, and T.L. Jones. Enhancement of thermal water vapor diffusion in soil. Soil Sci. Soc. Am. 48 (1): 25–32. (1984). [CrossRef] [Google Scholar]
  11. Catolico, N., S. Ge, and J.S. McCartney. Numerical modeling of a soil-borehole thermal energy storage system. Vadose Zone J. 15 (1): 1–17. (2016). [Google Scholar]
  12. de Vries D.A, Simultaneous transfer of heat and moisture in porous media. Trans. American Geohys. Union, 39(5), 909-916. (1958). [CrossRef] [Google Scholar]
  13. Goode J.C III, and J.S McCartney, Centrifuge modeling of end-restraint effects in energy foundations. Geotechnical and Geoenvironmental Engineering, 141(8). (2015). [Google Scholar]
  14. Grant, S.A., and A. Salehzadeh. “Calculations of temperature effects on wetting coefficients of porous solids and their capillary pressure functions.” Water Resour. Res. 32 (2): 261–270. (1996). [Google Scholar]
  15. Grifoll, J., J.M. Gasto, and Y. Cohen, Non-isothermal soil water transport and evaporation, Adv. Water Resour. 28, 1254–1266. (2005). [Google Scholar]
  16. Hillel, D., Fundamental of Soil Physics, Academic, San Diego, Calif. Ho, C. K., and S. W. Webb, Review of porous media enhanced vapor-phase diffusion mechanisms, models, and data—Does enhanced vapor-phase diffusion exist, J. Porous Media, 1, 71– 92. (1980). [Google Scholar]
  17. Lu, N., and Y. Dong. A closed form equation for thermal conductivity of unsaturated soils at room temperature. J. Geotech. Geoenviron. Eng. 141 (6): (2015). [Google Scholar]
  18. Lurie M.V. Modeling of Oil Product and Gas Pipeline Transportation. Wiley-VCH Verlag. (2008). [CrossRef] [Google Scholar]
  19. McCartney, J.S., and Murphy, K.D. Investigation of potential dragdown/uplift effects on energy piles. Geomechanics for Energy and the Environment, 10, 21-28. (2017). [CrossRef] [Google Scholar]
  20. Millington, R.J., and J.M. Quirk. Permeability of porous solids. Trans. Faraday Soc. 57: (1961). [CrossRef] [Google Scholar]
  21. Monteith J.L. and M.H. Unsworth. Principles of Environmental Physics. New York: Routledge Chapman and Hall. (1990). [Google Scholar]
  22. Moradi, A.M., K. Smits, N. Lu, and J.S. McCartney. 2016. Heat transfer in unsaturated soil with application to borehole thermal energy storage. Vadose Zone J. 15 (10): 1–17. (2016). [Google Scholar]
  23. Philip J.R. and D.A. de Vries. Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union 38 (2): 222–232. (1957). [CrossRef] [Google Scholar]
  24. Saito H., J. Simunek, and B. P. Mohanty, Numerical analysis of coupled water, vapor, and heat transport in the vadose zone, Vadose Zone J., 5, (2006). [Google Scholar]
  25. She, H.Y. and B.E. Sleep. The effect of temperature on capillary pressure-saturation relationships for air-water and perchloroethylene-water systems. Water Resources Res. 34(10), (1998). [CrossRef] [Google Scholar]
  26. Smits K.M., A. Cihan, S. Sakaki, and T.H. Illangasekare. Evaporation from soils under thermal boundary conditions: Experimental and modeling investigation to compare equilibrium- and nonequilibrium based approaches. Water Resour. (2011). Res. 47: W05540. [Google Scholar]
  27. Thomas H.R, and Y. He, Analysis of coupled heat, moisture and air transfer in a deformable unsaturated soil. Géotechnique, 45(4), 677-689. (1995). [CrossRef] [Google Scholar]
  28. van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44 (5): (1980) [Google Scholar]
  29. Whitaker, S. Simultaneous heat, mass and momentum transfer in porous media: A theory of drying porous media. Adv. Heat Transf. 13: (1977). [Google Scholar]
  30. Zhang, J., and A.K. Datta. Some considerations in modeling of moisture transport in heating of hygroscopic materials. Drying Technol. 22 (8). (2004 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.