Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 05008
Number of page(s) 5
Section Issues Related to Energy Piles
Published online 18 November 2020
  1. H.M. Coyle, L.C Reese. Load transfer for axially loaded piles in clay. J. Soil Mech. Found. Div. ASCE. 92, No. 2, 1–26. (1966) [Google Scholar]
  2. H.G. Poulos. Pile behaviour-theory and application. Géotechnique 39, No. 3, 365-415. (1989) [CrossRef] [Google Scholar]
  3. M.F. Randolph, P. Clancy. Efficient design of piled rafts. 5th International Conference on Deep Foundations on Bored and Auger Piles, 1-4 June, Ghent, Belgium, pp. 119-130. (1993) [Google Scholar]
  4. M.F. Randolph. Design methods for pile groups and piled rafts”. State of the Art Report, XIII ICSMFE, New Delhi, vol. 5, pp. 61-82. (1994) [Google Scholar]
  5. K.M. Lee, Z.R. Xiao. A simplified nonlinear approach for pile group settlement analysis in multilayered soils. Can. Geotech. J. 38, No. 5, 1063–1080. (2001) [CrossRef] [Google Scholar]
  6. E.M. Comodromos, M.C. Papadopoulou, L. Laloui. Contribution to the design methodologies of piled raft foundations under combined loadings. Can. Geotech. J. 53, No. 4, 559–577. (2016) [CrossRef] [Google Scholar]
  7. E. Ravera, M. Sutman, L. Laloui. Analysis of the interaction factor method for energy pile groups with slab. Comput. Geotech. 119, 103294. (2020) [Google Scholar]
  8. C. Knellwolf, H. Peron, L. Laloui. Geotechnical analysis of heat exchanger piles. J. Geotech. Geoenviron. Engng. 137, No 10, 890-902. (2011) [Google Scholar]
  9. M. Suryatriyastuti, H. Mroueh, S. Burlon. A load transfer approach for studying the cyclic behavior of thermo-active piles. Comput. Geotech. 55, 378–391. (2014) [Google Scholar]
  10. C. Pasten, J.C. Santamarina. Thermally induced long-term displacement of thermoactive piles. J. Geotech. Geoenviron. Engng. 140, No. 5, 06014003. (2014) [Google Scholar]
  11. M. Sutman, G. Olgun, L. Laloui. Cyclic Load– Transfer Approach for the Analysis of Energy Piles J. Geotech. Geoenviron. Eng. 145, No. 1, 04018101. (2019) [Google Scholar]
  12. L. Laloui, A.F. Rotta Loria. Analysis and Design of Energy Geostructures. Theoretical Essentials and Practical Application. (Academic Press, 1096 pages, ISBN : 9780128206232, 2019) [Google Scholar]
  13. H.G. Poulos. Analysis of the settlement of pile groups. Géotechnique 18, No 4, 449-471. (1968) [CrossRef] [Google Scholar]
  14. H.G. Poulos, E.H. Davis. Pile foundation analysis and design. Wiley. (1980) [Google Scholar]
  15. A.F. Rotta Loria, L. Laloui. The interaction factor method for energy pile groups. Comput. Geotech. 80, 121-137. (2016) [Google Scholar]
  16. J.S. McCartney, J.E. Rosenberg. Impact of heat exchange on side shear in thermo-active foundations. In Proceedings of geo-frontiers: advances in geotechnical engineering (eds J. Han and D. E. Alzamora), GSP 211, pp. 488–498. Reston, VA, USA: American Society of Civil Engineers (ASCE). (2011) [Google Scholar]
  17. B. Wang, A. Bouazza, C. Haberfield. Preliminary observations from laboratory scale model geothermal pile subjected to thermal-mechanical loading. In Proceedings of geo-frontiers 2011: advances in geotechnical engineering (eds J. Han andD. E. Alzamora), GSP 211, pp. 430–439. Reston, VA, USA: American Society of Civil Engineers (ASCE). (2011) [Google Scholar]
  18. J.III Goode, M. Zhang, J.S. McCartney. Centrifuge modeling of energy foundations in sand. In ICPMG2014 – physical modelling in geotechnics (eds C. Gaudin and D.White), pp. 729–736. Boca Raton, FL, USA: CRC Press. (2014) [CrossRef] [Google Scholar]
  19. C.A. Kramer, P. Basu. Performance of a model geothermal pile in sand. In Proceedings of 8th international conference on physical modelling in geotechnics (eds C. Gaudin and D.White), pp. 771– 777. Boca Raton, FL, USA: CRC Press. (2014) [Google Scholar]
  20. C.W.W. Ng, C. Shi, A. Gunawan, L. Laloui, H. Liu. Centrifuge modelling of heating effects on energy pile performance in saturated sand. Can. Geotech. J. 52, No. 8, 1045–1057. (2015) [Google Scholar]
  21. A.F. Rotta Loria, L. Laloui. Thermally induced group effects among energy piles. Géotechnique 67, No 5, 374-393. (2017) [CrossRef] [Google Scholar]
  22. E. Ravera, M. Sutman, L. Laloui. Load transfer method for energy piles in a group with pile–soil– slab–pile interaction. J. Geotech. Geoenviron. Eng. 146, No. 6, 04020042. (2020) [Google Scholar]
  23. R. Frank, S. Zhao. Estimation par les paramètres pressiométriques de l’enfoncement sous charge axiale de pieux forés dans des sols fins. Bull. de Liaison des Laboratoire des Ponts et Chaussées 119, 17–24. (1982) [Google Scholar]
  24. A.F. Rotta Loria, L. Laloui. Group action caused by various operating energy piles. Géotechnique 68, No 9, 834-841. (2018) [CrossRef] [Google Scholar]
  25. L. Laloui, M. Moreni, G. Steinmann, A. Fromentin, D. Pahud. Test en conditions réelles du comportement statique d’un pieu soumis a des sollicitations thermomecaniques. Rapport final, Office federal de I’energie, Bern, Suisse. (1999) [Google Scholar]
  26. L. Laloui, M. Moreni, L. Vulliet. Comportement d’un pieu bi-fonction, fondation et échangeur de chaleur. Can. Geotech. J. 40, No. 2, 388–402. (2003) [CrossRef] [Google Scholar]
  27. L. Zhang, H.H. Einstein. End bearing capacity of drilled shafts in rock. J. Geotech. Geoenviron 124, No 7, 574-584. (1998) [CrossRef] [Google Scholar]
  28. M.I. Gorbunov-Posadov, R.V. Serebrjanyi. Design of structures on elastic foundation. In 5th International conference on Soil Mechanics and Foundation Engineering.), vol. 1, pp. 643-648. (1961) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.