Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 05007
Number of page(s) 5
Section Issues Related to Energy Piles
Published online 18 November 2020
  1. Pan S.-Y., Du M.A., Huang I.-T., Liu I.-H., Chang E.-E. & Chiang P.-C. Strategies on implementation of waste-to-energy (WTE) supply chain for circular economy system: a review. Journal of Cleaner Production. 108: 409–421 (2015). [Google Scholar]
  2. IEA (2011). [Google Scholar]
  3. Chen D. and McCartney J.S. Parameters for load transfer analysis of energy piles in uniform nonplastic soils. ASCE International Journal of Geomechanics. 17(7): 04016159. (2016). [CrossRef] [Google Scholar]
  4. Faizal M., Bouazza, A., Haberfield, C., & McCartney, J.S. Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes,: Journal of Geotechnical and Geoenvironmental Engineering. 144(10): 04018072, (2018). [Google Scholar]
  5. Amatya B.L., Soga, K., Bourne-Webb, P.J., Amis, T., and Laloui, L. Thermo-mechanical behaviour of energy piles Geotechnique. 62(6): 503-519 (2012). [Google Scholar]
  6. Loveridge, F.A., Narsilio, G., Sanchez, M., and McCartney, J.S. (2019). Energy geostructures: a review of analysis approaches, in situ testing and model scale experiments. Geomechanics for Energy and the Environment. 22, 100173, 1-30. [Google Scholar]
  7. Gehlin S. Thermal Response Test: Method Development and Evaluation. Doctoral Thesis. (2002). [Google Scholar]
  8. Laloui L. Nuth, M., and Vulliet, L. Experimental and numerical investigations of the behaviour of a heat exchanger pile. International Journal for Numerical and Analytical Methods in Geomechanics. 30: 763– 781, (2006). [Google Scholar]
  9. Brandl H. Energy foundations and other thermo-active ground structures Géotechnique. 56(2): 81– 126 (2006). [Google Scholar]
  10. Bourne-Webb P.J. Amatya B., Soga K., Amis T., Davidson T., and Payne P. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles Géotechnique. 59(3): 237-248. (2009). [CrossRef] [Google Scholar]
  11. McCartney J.S. & Murphy, K.D. Strain distributions in full-scale energy foundations. DFI Journal. 6(2), 26–38. (2012). [Google Scholar]
  12. Akrouch G., Sánchez, M., and Briaud, J.L. Thermo-mechanical behavior of energy piles in high plasticity clays Acta Geotechnica. - 9(3): 399–412, (2014). [Google Scholar]
  13. Mimouni T. & Laloui, L. Towards a secure basis for the design of geoenergy piles: Acta Geotechnica 9(3), 355–366, (2014). [Google Scholar]
  14. Wang B., Bouazza, A., Singh, R.M., Haberfield, C., Barry-Macaulay, D. & Baycan, S. Posttemperature effects on shaft capacity of a full-scale geothermal energy pile Geotech. Geoenviron. Eng. 4, 04014125 (2014). [Google Scholar]
  15. Murphy K.D., McCartney, J.S. & Henry, K.S. Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations : Acta Geotechnica. Acta Geotechnica. 10(2), 179-195, (2015). [Google Scholar]
  16. Sutman M., Olgun, C. G., & Laloui, L. Cyclic load– transfer approach for the analysis of energy piles. Journal of Geotechnical and Geoenvironmental Engineering. 145(1) (2015). [Google Scholar]
  17. McCartney J.S. and Murphy, K.D. Investigation of potential dragdown/uplift effects on energy piles. Geomechanics for Energy and the Environment. 10(June), 21-28. (2017). [Google Scholar]
  18. Di Donna A., Ferrari, A. & Laloui, L. Experimental investigation of the soil concrete interface: physical mechanisms, cyclic mobilization and behavior at different temperatures: Can. Geotech., 53(4), 659– 672. (2016). [Google Scholar]
  19. McCartney J.S. & Rosenberg J.E. Impact of heat exchange on the axial capacity of thermo-active foundations. Proceedings of Geo-Frontiers 2011 (GSP 211). J. Han and D.E. Alzamora, eds. ASCE, Reston VA. pp. 488-498. (2011). [Google Scholar]
  20. Ng, C. W. W., Shi, C., Gunawan, A., and Laloui, L. (2014). “Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay.” Geotechnique Lett., 4(4), 310–316. [CrossRef] [Google Scholar]
  21. Stewart, M.A. and McCartney, J.S. (2014). Centrifuge modeling of soil-structure interaction in energy foundations. ASCE Journal of Geotechnical and Geoenvironmental Engineering. 140(4), 04013044-1-11. [CrossRef] [Google Scholar]
  22. Goode, J.C., III and McCartney, J.S. (2015). Centrifuge modeling of boundary restraint effects in energy foundations. Journal of Geotechnical and Geoenvironmental Engineering. 141(8), 04015034. DOI: 10.1061/(ASCE)GT.1943-5606.0001333. [CrossRef] [Google Scholar]
  23. Ferreira M.S., Estacas geotérmicas: uso de energia sustentável e resposta termomecânica sob variação de temperatura. Disseratação de Mestrado. (2017). [Google Scholar]
  24. Laloui L. & Cekerevac C. Thermo-plasticity of clays: an isotropic yield mechanism: Computers and Geotechnics, 30(8):649–660. (2003). [Google Scholar]
  25. Di Donna A. & Laloui, L. Advancements in the geotechnical design of energy piles. Proceedings of International Workshop on Geomechanics and Energy. 26–28. (2013). [Google Scholar]
  26. Di Donna A. & Laloui, L. Numerical analysis of the geotechnical behaviour of energy piles Int. J. Numer. Analyt. Methods Geomech. 39(8): 861–888. (2015) [Google Scholar]
  27. Yavari N., Tang, A. M., Pereira, J.M. & Hassen, G. Effect of temperature on the shear shear strength of soils and soil/ structure interface. Can. Geotech. J. 53(7): 1186-1194 (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.