Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 05017
Number of page(s) 6
Section Issues Related to Energy Piles
DOI https://doi.org/10.1051/e3sconf/202020505017
Published online 18 November 2020
  1. B.L. Amatya, K. Soga, P.J. Bourne-Webb, T. Amis, L. Laloui. Thermo-mechanical behaviour of energy piles. Géotechnique 62(6):503-19 (2012) [CrossRef] [Google Scholar]
  2. P.J. Bourne-Webb, S. Burlon, S. Javid, S. Kuerten, F. Loveridge. Analysis and design methods for energy geostructures. Renewable and sustainable energy 65:402-419 (2016) [Google Scholar]
  3. T.Mimouni, L. Laloui. Behaviour of a group of energy piles. Canadian Geoechnical Journal 52(12):1913-14 (2015) [Google Scholar]
  4. J.N. Franzius, N. Pralle. Turning segmental tunnels into sources of renewable energy. Proc. of the Institution of Civil Engineers-Civil Engineering 164(1):35-40 (2011) [Google Scholar]
  5. G.P. Ding, J.J. Jiao, D.X. Zhang. Modelling study on the impact of deep building foundations on the groundwater system. Hydrol. Process 22(12), 1857-1865 (2008) [Google Scholar]
  6. E. Pujades, A. Lopez, J. Carrera, E. Vázquez-Suñé, A. Jurado. Barrier effect of underground structures on aquifers. Eng. Geol. -146(7): 41-49 (2012) [Google Scholar]
  7. Y. Delerablée. Intégration thermique et mécanique des géostructures thermiques : de l’échelle du bâtiment à l’échelle de la cite. PhD thesis. Univ. Paris-Est, Marne-la-Vallée (2019) [Google Scholar]
  8. A. Fromentin, D. Pahud. Recommandations pour la realisation d’installations avec pieux échnageurs. Rapport final. Rapport d’étude n°120.104 Office fédéral de l’énergie, Lausanne, Suisse (1997) [Google Scholar]
  9. D. Pahud, A. Fromentin, M. Hubbuch. Heat exchanger pile system of the dock midfield at the Zurich Airport. Detailed simulation and optimization of the installation. Rapport final. Rapport d’étude n°120.110. Office fédéral de l’énergie, Lausanne, Suisse (1999) [Google Scholar]
  10. H. Brandl. Energy foundations and other thermo-active ground structures. Géotechnique 56(2): 81-122 [Google Scholar]
  11. P. Eskilson. Thermal analysis of heat extraction boreholes. PhD Thesis. Lund University, Sweden (1987) [Google Scholar]
  12. G. Radioti, B. Cerfontaine, R. Charlier, F. Nguyen. Experimental and numerical investigation of a long-duration Thermal Response Test: Borehole heat exchanger behaviour and thermal plume in the heterogeneous rock mass. Geothermics, 71: 245-258 (2018) [Google Scholar]
  13. M. Barla, A. Di Donna, M. Baralis. City-scale analysis of subsoil thermal conditions due to geothermal exploitation. Environmental Geotechnics 17(87),11p (2018) [Google Scholar]
  14. A. Di Donna, M. Barla, T. Amis. Energy Geostructures: Analysis from research and systems installed around the world. DFI 42nd Annual Conference on Deep Foundations, New Orleans, USA (2017) [Google Scholar]
  15. E. Guyon, L. Petit, J.P. Hulin. Hydrodynamique physique. Interéditions (1991) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.