Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 05016
Number of page(s) 6
Section Issues Related to Energy Piles
Published online 18 November 2020
  1. M. L’Ecuyer, C. Zoi, and J. S. Hoffman, Space conditioning: the next frontier: the potential of advanced residential space conditioning technologies for reducing pollution and saving consumers money. Office of Air and Radiation, US Environmental Protection Agency, 1993. [Google Scholar]
  2. T. Mimouni, “Thermomechanical characterization of energy geostructures with emphasis on energy piles,” EPFL, 2014. [Google Scholar]
  3. L. Laloui and A. Di Donna, “Understanding the behaviour of energy geo-structures,” Proceedings of the Institution of Civil Engineers, vol. 164, no. 4, p. 184, 2011. [Google Scholar]
  4. J. S. McCartney, M. Sánchez, and I. Tomac, “Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management,” Computers and Geotechnics, vol. 75, pp. 244–256, 2016. [Google Scholar]
  5. H. Brandl, “Energy foundations and other thermo-active ground structures,” Géotechnique, vol. 56, no. 2, pp. 81–122, 2006. [Google Scholar]
  6. B. L. Amatya, K. Soga, P. J. Bourne-Webb, T. Amis, and L. Laloui, “Thermo-mechanical behaviour of energy piles,” Géotechnique, vol. 62, no. 6, p. 503, 2012. [CrossRef] [Google Scholar]
  7. L. Laloui, M. Nuth, and L. Vulliet, “Experimental and numerical investigations of the behaviour of a heat exchanger pile,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 30, no. 8, pp. 763–781, 2006. [Google Scholar]
  8. P. J. Bourne-Webb, B. Amatya, K. Soga, T. Amis, C. Davidson, and P. Payne, “Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles,” Géotechnique, vol. 59, no. 3, pp. 237–248, 2009. [CrossRef] [Google Scholar]
  9. T. Amis, P. Bourne-Webb, C. Davidson, B. Amatya, and K. Soga, “The effects of heating and cooling energy piles under working load at Lambeth College, UK,” presented at the DFI Conference New York, 2008. [Google Scholar]
  10. B. Wang et al., “Field and laboratory investigation of a heat exchanger pile,” in GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, 2012, pp. 4396–4405. [Google Scholar]
  11. K. D. Murphy, J. S. McCartney, and K. H. Henry, “Thermo-mechanical response tests on energy foundations with different heat exchanger configurations,” Acta Geotechnica, vol. 1, p. 17, 2014. [Google Scholar]
  12. K. D. Murphy and J. S. McCartney, “Seasonal response of energy foundations during building operation,” Geotechnical and Geological Engineering, vol. 33, no. 2, pp. 343–356, 2015. [Google Scholar]
  13. C. W. W. Ng, C. Shi, A. Gunawan, and L. Laloui, “Centrifuge modelling of energy piles subjected to heating and cooling cycles in clay,” Géotechnique Letters, vol. 4, no. 4, pp. 310–316, 2014. [Google Scholar]
  14. B. Wang, A. Bouazza, and C. Haberfield, “Preliminary observations from laboratory scale model geothermal pile subjected to thermal-mechanical loading,” in Geo-Frontiers 2011: Advances in Geotechnical Engineering, 2011, pp. 430–439. [Google Scholar]
  15. A. Kalantidou, A. M. Tang, J.-M. Pereira, and G. Hassen, “Preliminary study on the mechanical behaviour of heat exchanger pile in physical model,” Géotechnique, vol. 62, no. 11, p. 1047, 2012. [CrossRef] [Google Scholar]
  16. N. Yavari, A. M. Tang, J.-M. Pereira, and G. Hassen, “Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling,” Acta Geotechnica, vol. 9, no. 3, pp. 385–398, 2014. [Google Scholar]
  17. C. A. Kramer, “An experimental investigation on performance of a model geothermal pile in sand,” 2013. [Google Scholar]
  18. O. Ghasemi-Fare and P. Basu, “A practical heat transfer model for geothermal piles,” Energy and Buildings, vol. 66, pp. 470–479, 2013. [Google Scholar]
  19. V. Fioravante, “On the shaft friction modelling of non-displacement piles in sand,” Soils and foundations, vol. 42, no. 2, pp. 23–33, 2002. [CrossRef] [Google Scholar]
  20. F. Schnaid and G. T. Houlsby, “Assessment of chamber size effects in the calibration of in situ tests in sand,” Géotechnique, vol. 41, no. 3, pp. 437–445, 1991. [CrossRef] [Google Scholar]
  21. A. K. Parkin and T. Lunne, “Boundary effects in the laboratory calibration of a cone penetrometer for sand,” Norwegian Geotechnical institute publication, no. 138, 1982. [Google Scholar]
  22. L. M. Kraft Jr, “Performance of axially loaded pipe piles in sand,” Journal of Geotechnical Engineering, vol. 117, no. 2, pp. 272–296, 1991. [CrossRef] [Google Scholar]
  23. R. Salgado, The engineering of foundations, vol. 888. McGraw-Hill New York, 2008. [Google Scholar]
  24. D. Loukidis and R. Salgado, “Analysis of the shaft resistance of nondisplacement piles in sand,” Géotechnique, 2008. [Google Scholar]
  25. C. A. Kramer, O. Ghasemi-Fare, and P. Basu, “Laboratory thermal performance tests on a model heat exchanger pile in sand,” Geotechnical and Geological Engineering, vol. 33, no. 2, pp. 253– 271, 2015. [CrossRef] [Google Scholar]
  26. C. Wang, H. Liu, G. Kong, C. W. Ng, and D. Wu, “Model tests of energy piles with and without a vertical load,” Environmental Geotechnics, vol. 3, no. 4, pp. 203–213, 2016. [CrossRef] [Google Scholar]
  27. O. Ghasemi-Fare and P. Basu, “Influences of ground saturation and thermal boundary condition on energy harvesting using geothermal piles,” Energy and Buildings, vol. 165, pp. 340–351, 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.