Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 05021
Number of page(s) 6
Section Issues Related to Energy Piles
DOI https://doi.org/10.1051/e3sconf/202020505021
Published online 18 November 2020
  1. M.A. Omer, Ground-source heat pumps systems and applications, Renewable and Sustainable Energy Reviews. 12 (2008) 344–371. https://doi.org/10.1016/j.rser.2006.10.003. [CrossRef] [Google Scholar]
  2. S.A. Taylor, L. Cavazza, The movement of soil moisture in response to temperature gradients 1, Soil Science Society of America Journal. 18 (1954) 351– 358. https://doi.org/10.2136/sssaj1954.03615995001800040001x. [CrossRef] [Google Scholar]
  3. J.R. Philip, D.A.D. Vries, Moisture movement in porous materials under temperature gradients, Eos, Transactions American Geophysical Union. 38 (1957) 222–232. https://doi.org/10.1029/TR038i002p00222. [CrossRef] [Google Scholar]
  4. O.T. Farouki, The thermal properties of soils in cold regions, 1981. http://www.sciencedirect.com/science/article/pii/0165232X81900410 (accessed March 31, 2019). [Google Scholar]
  5. N. Lu, Y. Dong, Closed-form equation for thermal conductivity of unsaturated soils at room temperature, Journal of Geotechnical and Geoenvironmental Engineering. 141 (2015) 04015016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001295. [CrossRef] [Google Scholar]
  6. T. Başer, Y. Dong, A.M. Moradi, N. Lu, K. Smits, S. Ge, D. Tartakovsky, J.S. McCartney, Role of nonequilibrium water vapor diffusion in thermal energy storage systems in the vadose zone.” Journal of Geotechnical and Geoenvironmental Engineering. 144 (7): 04018038. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001910. [Google Scholar]
  7. T. Baser and J.S. McCartney, Transient evaluation of a soil-borehole thermal energy storage system, Renewable Energy 147, 2582-2598. [Google Scholar]
  8. J. Gao, X. Zhang, J. Liu, K.S. Li, J. Yang, Thermal performance and ground temperature of vertical pile-foundation heat exchangers: A case study, Applied Thermal Engineering. 28 (2008) 2295–2304. [Google Scholar]
  9. A. Zarrella, M. De Carli, A. Galgaro, Thermal performance of two types of energy foundation pile: Helical pipe and triple U-tube, Applied Thermal Engineering. 61 (2013) 301–310. https://doi.org/10.1016/j.applthermaleng.2013.08.011. [Google Scholar]
  10. B. Bezyan, S. Porkhial, A.A. Mehrizi, 3-D simulation of heat transfer rate in geothermal pile-foundation heat exchangers with spiral pipe configuration, Applied Thermal Engineering. 87 (2015) 655–668. https://doi.org/10.1016/j.applthermaleng.2015.05.051. [Google Scholar]
  11. H. Park, S.-R. Lee, S. Yoon, J.-C. Choi, Evaluation of thermal response and performance of PHC energy pile: Field experiments and numerical simulation, Applied Energy. 103 (2013) 12–24. https://doi.org/10.1016/j.apenergy.2012.10.012. [Google Scholar]
  12. COMSOL Multiphysics, Subsurface Flow Module User’s Guide, (2018). [Google Scholar]
  13. M.T. van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1, Soil Science Society of America Journal. 44 (1980) 892–898. [CrossRef] [Google Scholar]
  14. Y. Mualem, A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resources Research. 12 (1976) 513–522. https://doi.org/10.1029/WR012i003p00513. [Google Scholar]
  15. T. S. O. Morais, C. H. C. Tsuha, In-situ measurements of the soil thermal properties for energy foundation applications in São Paulo, Brazil, Bulgarian Chemical Communications. 50 (2018) 34–41. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.