Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 05022
Number of page(s) 6
Section Issues Related to Energy Piles
DOI https://doi.org/10.1051/e3sconf/202020505022
Published online 18 November 2020
  1. Murphy, K. D., McCartney, J. S., and Henry, K. S. (2015). “Evaluation of thermo-mechanical and thermal behavior of full-scale energy foundations.” Acta Geotechnica, 10(2), 179–195. [Google Scholar]
  2. H. Brandl, Energy foundations and other thermo-active ground structures, Géotechnique. 56 (2006) 81–122. https://doi.org/10.1680/geot.2006.56.2.81. [CrossRef] [Google Scholar]
  3. P. Bourne-Webb, S. Burlon, S. Javed, S. Kürten, F. Loveridge, Analysis and design methods for energy geostructures, Renewable and Sustainable Energy Reviews. 65 (2016) 402–419. [CrossRef] [Google Scholar]
  4. H.M. Abuel-Naga, D.T. Bergado, A. Bouazza, G.V. Ramana, Volume change behaviour of saturated clays under drained heating conditions: experimental results and constitutive modeling, Can. Geotech. J. 44 (2007) 942–956. https://doi.org/10.1139/t07-031. [CrossRef] [Google Scholar]
  5. L. Laloui, B. François, ACMEG-T: Soil Thermoplasticity Model, J. Eng. Mech. 135 (2009) 932–944. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000011. [Google Scholar]
  6. R.G. Campanella, J.K. Mitchell, Influence of Temperature Variations on Soil Behavior, University of California, Institute of Transportation and Traffic Engineering, Soil Mechanics and Bituminous Materials Research Laboratory, 1968. [Google Scholar]
  7. M.A. Biot, General Theory of Three‐Dimensional Consolidation, Journal of Applied Physics. 12 (1941) 155–164. https://doi.org/10.1063/1.1712886. [Google Scholar]
  8. J.R. Booker, C. Savvidou, Consolidation around a point heat source, Int. J. Numer. Anal. Methods Geomech. 9 (1985) 173–184. https://doi.org/10.1002/nag.1610090206. [Google Scholar]
  9. A.M. Britto, C. Savvidou, M.J. Gunn, J.R. Booker, Finite element analysis of the coupled heat flow and consolidation around hot buried objects, Soils and Foundations. Japanese Society of Soil Mechanics and Foundation Engineering. 23 (1992) 13–25. [CrossRef] [Google Scholar]
  10. R.W. Lewis, C.E. Majorana, B.A. Schrefler, A coupled finite element model for the consolidation of nonisothermal elastoplastic porous media, Transp Porous Med. 1 (1986) 155–178. https://doi.org/10.1007/BF00714690. [CrossRef] [Google Scholar]
  11. T. Hueckel, M. Borsetto, Thermoplasticity of Saturated Soils and Shales: Constitutive Equations, Journal of Geotechnical Engineering. 116 (1990) 1765–1777. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:12(1765). [CrossRef] [Google Scholar]
  12. K. Terzaghi, R.B. Peck, G. Mesri, Soil Mechanics in Engineering Practice, Third Edition, John Wiley & Sons, Inc., 1996. [Google Scholar]
  13. L. Laloui, M. Nuth, L. Vulliet, Experimental and numerical investigations of the behaviour of a heat exchanger pile, Int. J. Numer. Anal. Meth. Geomech. 30 (2006) 763–781. https://doi.org/10.1002/nag.499. [CrossRef] [Google Scholar]
  14. P.J. Bourne-Webb, B. Amatya, K. Soga, T. Amis, C. Davidson, P. Payne, Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles, Géotechnique. 59 (2009) 237–248. [CrossRef] [Google Scholar]
  15. P.J. Bourne-Webb, B. Amatya, K. Soga, A framework for understanding energy pile behaviour, Proceedings of the Institution of Civil Engineers - Geotechnical Engineering. 166 (2013) 170–177. https://doi.org/10.1680/geng.10.00098. [Google Scholar]
  16. T.M. Bodas Freitas, F. Cruz Silva, P.J. Bourne-Webb, The response of energy foundations under thermo-mechanical loading, Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013. (2013). [Google Scholar]
  17. E. Holzbecher, Energy Pile Simulation – an Application of THM-Modeling, (2014) 7. [Google Scholar]
  18. R. Fuentes, N. Pinyol, E. Alonso, Effect of temperature induced excess porewater pressures on the shaft bearing capacity of geothermal piles, Geomechanics for Energy and the Environment. 8 (2016) 30–37. https://doi.org/10.1016/j.gete.2016.10.003. [CrossRef] [Google Scholar]
  19. Baser, T., Kim, K., Tarpey, E., Makhnenko, R., and Stumpf, A., Experimental Investigation of Coupled Thermo-Hydraulic Properties of Glacial Tills, Proceedings of GeoCongress (2020), 1-10. [Google Scholar]
  20. J.K. Mitchell, K. Soga, Fundamentals of Soil Behavior, John Wiley & Sons, Inc. (2005) 560. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.