Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 06001
Number of page(s) 6
Section Minisymposium: Advances in Energy Geostructures Research (organized by Fleur Loveridge and Guillermo Narsilio)
DOI https://doi.org/10.1051/e3sconf/202020506001
Published online 18 November 2020
  1. H. Brandl. Energy foundations and other thermo-active ground structures. Géotech 56, 81–122 (2006) [CrossRef] [Google Scholar]
  2. L. Laloui, M. Nuth, L. Vulliet. Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Methods Geomech 30, 763–81 (2006) [Google Scholar]
  3. T. Amis, P.J. Bourne-Webb, C. Davidson, B.L. Amatya, K. Soga. The effects of heating and cooling energy piles under working load at Lambeth College. In: Proc 33rd Annu 11th Int Conf Deep Found 10 (2008) [Google Scholar]
  4. P.J. Bourne-Webb, B. Amatya, K. Soga, T. Amis, C. Davidson, P. Payne. Energy pile test at Lambeth College, London: geotechnical and thermodynamic aspects of pile response to heat cycles. Géotechnique 59, 237–48 (2009) [CrossRef] [Google Scholar]
  5. B.L. Amatya, K. Soga, P.J. Bourne-Webb, T. Amis, L. Laloui. Thermo-mechanical behaviour of energy piles. Géotechnique 62, 503–19 (2012) [CrossRef] [Google Scholar]
  6. B. Wang, C. Haberfield, S. Baycan. Field investigation of a geothermal energy pile: Initial observations. Geotech-Fr Org 3415–8 (2013) [Google Scholar]
  7. R.M. Singh, A. Bouazza, B. Wang. Near-field ground thermal response to heating of a geothermal energy pile: Observations from a field test. Soils Found 55, 1412–26 (2015) [CrossRef] [Google Scholar]
  8. S. You, X. Cheng, H. Guo, Z. Yao. In-situ experimental study of heat exchange capacity of CFG pile geothermal exchangers. Energy Build 79, 23–31 (2014) [Google Scholar]
  9. G.A. Akrouch, M. Sánchez, J.L. Briaud. An experimental, analytical and numerical study on the thermal efficiency of energy piles in unsaturated soils. Comput Geotech 71, 207–20 (2016) [Google Scholar]
  10. J.S. McCartney, K.D. Murphy. Strain distributions in full-scale energy foundations. J Deep Found Inst 6, 26–38 (2012) [CrossRef] [Google Scholar]
  11. C. De Santiago, F.P. De Santayana, M. De Groot, J. Urchueguía, B. Badenes, T. Magraner, et al. Thermo-mechanical behavior of a thermo-active precast pile. Bulg Chem Commun 48, 41–54 (2016) [Google Scholar]
  12. M. Adinolfi, A. Mauro, R.M.S. Maiorano, N. Massarotti,, S. Aversa. Thermo-mechanical behaviour of energy pile in underground railway construction site. In: Proc 1st Int. Conf. on Energy Geotechnics, 83 (2016) [Google Scholar]
  13. M. Adinolfi, A. F. Rotta Loria, L. Laloui, S. Aversa. Experimental and numerical investigation of the thermo-mechanical behavior of an energy sheet pile wall. Geomechanics for Energy and the Environment (accepted) (2020) https://doi.org/10.1016/j.gete.2020.100208 [Google Scholar]
  14. M. Adinolfi, R. M. S. Maiorano, A. Mauro, N. Massarotti, S. Aversa. On the influence of thermal cycles on the yearly performance of an energy pile. Geomechanics for Energy and the Environment 16, 32-44 (2018) [Google Scholar]
  15. Rui, Y., Kechavarzi, C., O’Leary, F., Barker, C., Nicholson, D., & Soga, K. (2017). Integrity testing of pile cover using distributed fibre optic sensing. Sensors, 17(12), 2949. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.