Open Access
Issue |
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
|
|
---|---|---|
Article Number | 07004 | |
Number of page(s) | 7 | |
Section | Minisymposium: Geothermal Use of Built Urban Infrastructures and the Shallow Subsurface for Energy Storage and Production (organized by Frank Wuttke, Thomas Nagel, Sebastian Bauer and David Smeulders) | |
DOI | https://doi.org/10.1051/e3sconf/202020507004 | |
Published online | 18 November 2020 |
- D. Hillel, Introduction to soil physics (Academic Press, New York, 1982) [Google Scholar]
- T. P. Chacko and G. Renuka, “Temperature mapping, thermal diffusivity and subsoil heat flux at Kariavattom of Kerala,” J. Earth Syst. Sci., 111, 1, 79–85 (2002) [CrossRef] [Google Scholar]
- G. Florides and S. Kalogirou, “Ground heat exchangers—A review of systems, models and applications,” Renew. Energy, 32, 15, 2461–2478 (2007) [Google Scholar]
- M. İnallı and H. Esen, “Experimental thermal performance evaluation of a horizontal ground-source heat pump system,” Appl. Therm. Eng., 24, 14–15, 2219–2232 (2004) [Google Scholar]
- H. Fujii, K. Nishi, Y. Komaniwa, and N. Chou. “Numerical modeling of slinky-coil horizontal ground heat exchangers,” Geothermics, 41, 55–62 (2012) [Google Scholar]
- G. Florides, P. Christodoulides, and P. Pouloupatis, “Single and double U-tube ground heat exchangers in multiple-layer substrates,” Appl. Energy, 102, 364– 373 (2013) [Google Scholar]
- N. Naili, M. Hazami, I. Attar, and A. Farhat, “In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia,” Energy, 61, 319–331 (2013) [CrossRef] [Google Scholar]
- H. Fujii, H. Okubo, K. Nishi, R. Itoi, K. Ohyama, and K. Shibata, “An improved thermal response test for U-tube ground heat exchanger based on optical fiber thermometers,” Geothermics, 38, 4, 399–406 (2009) [Google Scholar]
- H. Fujii, K. Nishi, Y. Komaniwa, and N. Chou, “Numerical modeling of slinky-coil horizontal ground heat exchangers,” Geothermics, 41, 55–62 (2012) [Google Scholar]
- R. A. Beier, M. D. Smith, and J. D. Spitler, “Reference data sets for vertical borehole ground heat exchanger models and thermal response test analysis,” Geothermics, 40, 1, 79–85 (2011) [Google Scholar]
- C. Herrera, G. Nellis, D. Reindl, S. Klein, J. M. Tinjum, and A. McDaniel, “Use of a fiber optic distributed temperature sensing system for thermal response testing of ground-coupled heat exchangers,” Goethermics, 71, 331–338 (2018) [CrossRef] [Google Scholar]
- A. McDaniel, J. M. Tinjum, D. J. Hart, Y. Lin, A. Stumpf, and L. Thomas, “Distributed thermal response test to analyze thermal properties in heterogeneous lithology,” Geothermics, 76, 116–124 (2018) [Google Scholar]
- L. A. Salomone and W. D. Kovacs, “Thermal resitivity of soils,” J. Geotech. Eng., 110, 3, 375-389 (1984) [CrossRef] [Google Scholar]
- K. M. Smits, T. Sakaki, A. Limsuwat, and T. H. Illangasekare, “Thermal conductivity of sands under varying moisture and porosity in drainage–wetting cycles,” Vadose Zone J., 9, 1, 1–9 (2010) [Google Scholar]
- J. Yao, H. Oh, W. J. Likos, and J. M. Tinjum, “Three laboratory methods for measuring thermal resistivity dryout curves of coarse-grained soils,” Geotech. Test. J., 37, 6, 1056–1067 (2014) [Google Scholar]
- T. Başer, Y. Dong, A. M. Moradi, N. Lu, K. Smits, S. Ge, D. Tartakovsky, and J. S. McCartney, “Role of Nonequilibrium Water Vapor Diffusion in Thermal Energy Storage Systems in the Vadose Zone,” J. Geotech. Geoenviron. Eng., 144, 7 (2018) [Google Scholar]
- T. Başer and J. S. McCartney, “Transient evaluation of a soil-borehole thermal energy storage system,” Renew. Energy, 147, 2, 2582–2598 (2020) [Google Scholar]
- H. Demir, A. Koyun, and G. Temir, “Heat transfer of horizontal parallel pipe ground heat exchanger and experimental verification,” Appl. Therm. Eng., 29, 224–233 (2009) [Google Scholar]
- C. S. A. Chong, G. Gan, A. Verhoef, R. G. Garcia, and P. L. Vidale, “Simulation of thermal performance of horizontal slinky-loop heat exchangers for ground source heat pumps,” Appl. Energy, 104, 603–610 (2013) [Google Scholar]
- R. B. Simms, S. R. Haslam, and J. R. Craig, “Impact of soil heterogeneity on the functioning of horizontal ground heat exchangers,” Geothermics, 50, 35–43 (2014) [Google Scholar]
- M. Bortoloni and M. Bottarelli, “On the sizing of a flat-panel ground heat exchanger,” Intl. J. Energy Environ. Eng., 6, 55–63 (2015) [CrossRef] [Google Scholar]
- R. R. Dasare and S. K. Saha, “Numerical study of horizontal ground heat exchanger for high energy demand applications,” Appl. Therm. Eng., 85, 252– 263 (2015) [Google Scholar]
- G. Go, S. Lee, and N. V. Nikhil, and S. Yoon, “A new performance evaluation algorithm for horizontal GCHPs (ground coupled heat pump systems) that considers rainfall infiltration,” Energy, 83, 766–777 (2015) [CrossRef] [Google Scholar]
- R. Wu, J. M. Tinjum, and W. J. Likos, “Coupled thermal conductivity dryout curve and soil–water characteristic curve in modeling of shallow horizontal geothermal ground loops,” Geotech. Geol. Eng., 33, 2, 193–205, (2015) [CrossRef] [Google Scholar]
- S. E. Sofyan, E. Hu, and A. Kotousov, “A new approach to modeling of a horizontal geo-heat exchanger with an internal source term,” Appl. Energy, 164, 963–971 (2016) [Google Scholar]
- “Standard test method for particle-size analysis of soils,” ASTM Standard D 422-63, (2007) [Google Scholar]
- “Standard practice for classification of soils for engineering purposes (unified soil classification system),” ASTM Standard D 2487-11, (2011) [Google Scholar]
- J. M. Tinjum, C. H. Benson, and L. R. Blotz, “Soil-Water Characteristic Curves for Compacted Clays,” J. Geotech. Geoenviron. Eng., 123, 11, 1060– 1069 (1997) [CrossRef] [Google Scholar]
- N. Lu and W. J. Likos, Unsaturated soil mechanics (Wiley, New York, 2004) [Google Scholar]
- H. Oh and J. M. Tinjum, “Comparison of two laboratory methods for measuring the critical temperature of sandy soils,” Geotechnical Frontiers 2017, 809–817 (2017) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.