Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 08005
Number of page(s) 6
Section Minisymposium: Solid-Fluid Interactions in Emerging Energy Geo-Systems (organized by Shahrzad Roshankhah and Seunghee Kim)
Published online 18 November 2020
  1. C. A. Davy, F. Skoczylas, J.-D. Barnichon, P. Lebon. Permeability of macro-cracked argillite under confinement: Gas and water testing. Physics and Chemistry of the Earth 32:667–680 (2007). [CrossRef] [Google Scholar]
  2. S. M’Jahad, C. A. Davy, F. Skoczylas, J. Talandier. Characterization of transport and water retention properties of damaged Callovo-Oxfordian claystone. From: Norris, S., Bruno, J., Van Geet, M. & Verhoef, E. (eds) Radioactive Waste Confinement: Clays in Natural and Engineered Barriers. Geological Society, London, Special Publications, 443 (2016). [Google Scholar]
  3. Y. Song, C. A. Davy, D. Troadec, A.-M. Blanchenet, F. Skoczylas, J. Talandier J.-C. Robinet. Multi-scale pore structure of COx claystone: Towards the prediction of fluid transport. Marine and Petroleum Geology 65: 63-82 (2015). [Google Scholar]
  4. Y. Song, C. A. Davy, P. Bertier, D. Troadec. Understanding fluid transport through claystones from their 3D nanoscopic pore network. Microporous and Mesoporous Materials, 228:64-85 (2016). [CrossRef] [Google Scholar]
  5. J.C. Robinet, P. Sardini, D. Coelho, J.C. Parneix, D. Prêt, S. Sammartino, E. Boller, S. Altmann. Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: Example of the Callovo-Oxfordian mudstone (Bure, France). Water Resources Research, 48: W05554 (2012). [Google Scholar]
  6. L. M. Keller, L. Holzer, R. Wepf, P. Gasser. 3D geometry and topology of pore pathways in Opalinus clay: Implications for mass transport. Applied Clay Science 52:85–95 (2011). [Google Scholar]
  7. L. M. Keller, P. Schuetz, R. Erni, M. D. Rossell, F. Lucas, P. Gasser, L. Holzer. Characterization of multi-scale microstructural features in Opalinus Clay. Microporous and Mesoporous Materials 170:83–94 (2013). [Google Scholar]
  8. C. A. Davy, P. M. Adler. Three-scale analysis of the permeability of a natural shale. Physical Review E, 96:063116 (2017). [CrossRef] [PubMed] [Google Scholar]
  9. A.J. Katz, A.H. Thompson. Quantitative prediction of permeability in porous rock. Phys. Rev. B, Condens. Matter 34:8179-8181 (1986). [CrossRef] [Google Scholar]
  10. A.J. Katz, A. Thompson. Prediction of rock electrical conductivity from mercury injection measurements. J. Geophys. Res. Solid Earth 92 (B1): 599-607 (1987). [Google Scholar]
  11. S. Sammartino, M. Siitari-Kauppi, A. Meunier, P. Sardini, A. Bouchet, and E. Tevissen. An imaging method for the porosity of sedimentary rocks: Adjustment if the PMMA method-example of a characterization of a calcareous shale. J. Sediment. Res., 72:937–943 (2002). [CrossRef] [Google Scholar]
  12. P. Ercius, O. Alaidi, M.J. Rames, G. Ren, Electron Tomography : A Three-Dimensional Analytic Tool for Hard and Soft Materials Research, Adv Mater. October 14; 27(38): 5638–5663. doi: 10.1002/adma.201501015 (2015) [CrossRef] [PubMed] [Google Scholar]
  13. P. Hartel, H. Rose, C. Dignes, Conditions and reasons for incoherent imaging in STEM, Ultramicroscopy, 63, pp. 93-114 (1996). [Google Scholar]
  14. C. Messaoudi, T. Boudier, C. O. Sanchez Sorzano, S. Marco TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy, BMC Bioinformatics 8:288, DOI: 10.1186/1471-2105-8-288 (2007). [CrossRef] [PubMed] [Google Scholar]
  15. Yen JC, Chang FJ, Chang S, “A New Criterion for Automatic Multilevel Thresholding”, IEEE Trans. on Image Processing 4 (3): 370-378, ISSN 1057-7149, doi:10.1109/83.366472 (1995). [CrossRef] [PubMed] [Google Scholar]
  16. Sezgin, M & Sankur, B, “Survey over Image Thresholding Techniques and Quantitative Performance Evaluation”, Journal of Electronic Imaging 13(1): 146-165 (2004). [Google Scholar]
  17. Kapur, JN; Sahoo, PK & Wong, ACK, “A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram”, Graphical Models and Image Processing 29(3): 273-285 (1985). [CrossRef] [Google Scholar]
  18. Ridler, TW & Calvard, S, “Picture thresholding using an iterative selection method”, IEEE Transactions on Systems, Man and Cybernetics 8: 630-632 (1978). [CrossRef] [Google Scholar]
  19. P. M. Adler, C. G. Jacquin, and J. A. Quiblier. Flow in simulated porous media. Int. J. Multiphase Flow 16:691-712 (1990). [CrossRef] [Google Scholar]
  20. A. Pazdniakou, P. M. Adler. Dynamic permeability of porous media by the lattice Boltzmann method. Advances in Water Resources, 62:292-302 (2013). [Google Scholar]
  21. I. Malinouskaya, V. V. Mourzenko, J.-F. Thovert, P. M. Adler, Wave propagation through saturated porous media, Phys.Rev. E 77, 066302 (2008). [CrossRef] [Google Scholar]
  22. Wachspress E.L., Iterative solutions of elliptic systems, Prentice-Hall (1965). [Google Scholar]
  23. A. Henriette, C. G. Jacquin, and P. M. Adler. The effective permeability of heterogeneous porous media. Phys. Chem. Hydrodynam. 11, 63-80 (1989). [Google Scholar]
  24. P. Cosenza, J.C. Robinet, D. Prêt, E. Huret, M. Fleury, Y. Graud, P. Lebon, F. Villiras, M. Zamora,. Indirect estimation of the clay content of clay-rocks using acoustic measurements: new insights from the Montiers-sur-Saulx deep borehole (Meuse, France). Mar. Pet. Geol. 53, 117-132 (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.