Open Access
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 08006
Number of page(s) 6
Section Minisymposium: Solid-Fluid Interactions in Emerging Energy Geo-Systems (organized by Shahrzad Roshankhah and Seunghee Kim)
Published online 18 November 2020
  1. Sridharan. A., & Rao, A. Rectangular hyperbola fitting method for one-dimensional consolidation, Geotechnical Testing Journal, 4 (1981). [Google Scholar]
  2. Sridharan, A., Murthy, N.S., & Prakash, K. Rectangular hyperbola method of consolidation analysis. Géotechnique, 37 (1987). [Google Scholar]
  3. Tan, T.S., Inoue, T., & Lee, S.L. Hyperbolic method of consolidation analysis, J. Geotech. Engrg, ASCE, 117, (1991). [Google Scholar]
  4. Tan, S.A. Validation of hyperbolic method for settlement in clays with vertical drains, Soils and Foundations, 35 (1995). [Google Scholar]
  5. Asaoka A. Observational procedure of settlement prediction, Soils and Foundations, 18 (1978). [Google Scholar]
  6. Romero, E & Paul H. Simms, P.H. Microstructure investigation in unsaturated soils: A Review with Special Attention to Contribution of Mercury Intrusion Porosimetry and Environmental Scanning Electron Microscopy, J. Geotech. & Geological Engineering, 26 (2008). [Google Scholar]
  7. Alonso, E., Pinyol, N & Gens, A. Compacted soil behaviour: initial state, structure and constitutive modelling, 63 (2013) [Google Scholar]
  8. Masrouri, F.K, Bicalho, K.V. & Kawai, K. Laboratory Hydraulic Testing in Unsaturated Soils. Geotechnical and Geological engineering Journal, 26 (2008). [Google Scholar]
  9. Gardner, W.R. Calculation of capillary conductivity from pressure plate outflow data; Proc. Soil Science Society of America, 20 (1956). [Google Scholar]
  10. Brooks, R.H. & Corey, A.T. Hydraulic properties of porous media; Hydrol. Paper nº. 3, Colorado State Univ., Fort Collins (1964). [Google Scholar]
  11. Van Genuchten, M. T. A closed-from equation for predicting the hydraulic conductivity of unsaturated soil. Soil science of America Journal, 44 (1980). [Google Scholar]
  12. Fredlund, D., Xing A. Equations for the soil water characteristic curve. Canadian Geotechn. J. 31, (1994) [Google Scholar]
  13. Brutsaert, W. On pore size distribution and relative permeabilities of porous mediums, J. Geophys. Res., Vol. 68 1963 [Google Scholar]
  14. Fredlund, D.G. & Rahardjo, H. (1993). Soil Mechanics for unsaturated soils; John Wiley & Sons, New York. [Google Scholar]
  15. Lu, N. & Likos, W.J. (2004). Unsaturated Soil Mechanics, John Wiley & Sons. [Google Scholar]
  16. Alonso, E., Pinyol, N. y Olivella, S. Slope stability under rapid drawdown conditions. Water Resources Research, 44, (2008). [Google Scholar]
  17. Tarantino, A. (2010). Basic concepts in the mechanics and hydraulics of unsaturated geomaterials. Mechanics of unsaturated materials, Wiley (ed. L. Laloui). [Google Scholar]
  18. Richards, L.A. Capillary conduction of liquids in porous mediums. Physics 1, (1931) [Google Scholar]
  19. Bear, J. & Chen, A, (2010). Modelling groundwater flow and contaminant transport. Springer, Science & Business Media. [CrossRef] [Google Scholar]
  20. Hillel, D. (1998) Environmental Soil Physics. Academic press. [Google Scholar]
  21. Simunek, J., M. Th., van Genuchten, M.T. & M. Sejna, M. (2005). The HYDRUS-1-D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 3.0, HYDRUS Software Dep. of Environ. Sci., Univ. of Calif. Riverside. [Google Scholar]
  22. Kondner, R.L. Hyperbolic stress–strain response: cohesive soils. J. of the Soil Mech. & Foundations Div., ASCE 89 (1963), [Google Scholar]
  23. Duncan, J. M., & Chang, C. Y. Nonlinear analysis of stress and strain in soils. Journal of Soil Mechanics & Foundations Div.(1970). [Google Scholar]
  24. Chin F. K. (1970). Estimation of the ultimate load of piles from tests not carried to failure; Proc. of South East Asian Conference on Soil Engineering [Google Scholar]
  25. Fleming, W.G.K. A new method for single pile settlement prediction and analysis; Geotechnique, 42, (1992). [Google Scholar]
  26. Borel, S.M. Bustamante, M. & Gianeselli, L. An appraisal of the Chin Meethod based on 50 instrumented pile tests, Ground Engineering, (2004). [Google Scholar]
  27. Magnan J. P. & Deroy J. M. Analyse graphique des tassements observés sous les ouvrages, Bull, Liaison Laboratoire Central des Chaussees, (1980). [Google Scholar]
  28. Escario, V. and Juca, J. Strength and deformation ofpartly saturated soils. Proc. 12th Int. Conf. on Soil Mech. Found. Engng, Río de Janeiro, 3 (1989) [Google Scholar]
  29. Juca F.T (1990). Comportamiento de los suelos parcialmente saturados bajo succión controlada, Tesis Doctoral, UPM. [Google Scholar]
  30. Asanza, E. (2009). Determinación de las características de fricción en el contacto suelo-geotextil a diferentes succiones, mediante equipos de laboratorio singulares, Tesis Doctoral, UPM. [Google Scholar]
  31. Villamor-Lora, R.; Ghazanfari, E. & Asanza-Izquierdo, E. Geomechanical Characterization of Marcellus Shale. Rock Mechanics and Rock Engineering, 49, (2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.