Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 09003
Number of page(s) 7
Section Minisymposium: Engineered Geomaterials for Energy and Environmental Sustainability (organized by Alessandro Rotta Loria)
DOI https://doi.org/10.1051/e3sconf/202020509003
Published online 18 November 2020
  1. E. Romero, M. Villar and A. Lloret. Thermo-Hydro-Mechanical Behaviour of Two Heavily Overconsolidated Clays. Engineering Geology, 81, 255-268 (2005). [Google Scholar]
  2. P. Braun, S. Ghabezloo, P. Delage, et al. Determination of Multiple Thermo-Hydro-Mechanical Rock Properties in a Single Transient Experiment: Application to Shales. Rock Mech Rock Eng 52, 2023–2038 (2019). [Google Scholar]
  3. K. Murphy and J. McCartney. Seasonal Response of Energy Foundations during Building Operation. Geotechnical and Geological Engineering, 33, 343-356 (2015). [CrossRef] [Google Scholar]
  4. L. Laloui and A. Di Donna. Energy geostructures: innovation in underground engineering (ISTE Ltd and John Wiley & sons Inc., 2013). [CrossRef] [Google Scholar]
  5. J. Sulem, P. Lazar, I. Vardoulakis. Thermo-Poro-Mechanical Properties of Clayey Gougeand Application to Rapid Fault Shearing. Int. J. Numer. Anal. Meth. Geomech., 31, 523-554 (2007). [CrossRef] [Google Scholar]
  6. A. Di Donna, M. Barla, T. Amis. Energy geostructures: analysis from research and systems installed around the world. Proceedings of 42nd DFI Conference, (2017). [Google Scholar]
  7. B. François, L. Laloui. ACMEG-TS: a constitutive model for unsaturated soils under non-isothermal conditions. Int. J. Numer. Anal. Meth. Geomech., 32, 1955-1988 (2008). [CrossRef] [Google Scholar]
  8. C. Cekerevac and L. Laloui. Experimental study of thermal effects on the mechanical behaviour of a clay. Int. J. Numer. Anal. Meth. Geomech., 28, 209-228 (2004). [CrossRef] [Google Scholar]
  9. R. G. Campanella and J. K. Mitchell. Influence of temperature variations on soil behaviour. Jour. Soil Mech. and Found. Div., ASCE, 94 (1968). [Google Scholar]
  10. T. Hueckel and M. Borsetto. Thermoplasticity of Saturated Soils and Shales: Constitutive Equations. J Geotech Eng, 116, 1765–77 (1990). [CrossRef] [Google Scholar]
  11. H. Abuel-Naga, D. Bergado, and A. Bouazza. Thermally induced volume change and excess pore water pressure of soft Bangkok clay. Engineering Geology, 89, 144-154 (2007). [Google Scholar]
  12. A. Di Donna, L. Laloui. Response of soil subjected to thermal cyclic loading: experimental and constitutive study. Engineering Geology, 190, 65-76 (2015). [Google Scholar]
  13. D. Dixon, M. Gray, B. Lingnau, J. Graham and S. Campbell. Thermal expansion testing to determine the influence of pore water structure on water flow through dense clays. Proceedings of 46th Canadian Geotechnical Conference, Saskatoon (1993). [Google Scholar]
  14. M. Pedrotti and A. Tarantino. An experimental investigation into the micromechanics of non-active clays. Géotechnique, 68, 1–18 (2018). [CrossRef] [Google Scholar]
  15. A. Casarella, M. Pedrotti, A. Tarantino and A. Di Donna. A critical review of the effect of temperature on clay inter-particle forces and its effect on macroscopic thermal behaviour of clay. Proceedings of 16th IACMAG, Torino (2021). [Google Scholar]
  16. H. Modaressi and L. Laloui. A thermo-viscoplastic constitutive model for clays. Int J Numer Anal Meth Geomech, 21, 313–35 (1997). [CrossRef] [Google Scholar]
  17. Y.J. Cui, N. Sultan and P. Delage. A thermomechanical model for clays. Can Geotech J, 37, 607–620 (2000). [CrossRef] [Google Scholar]
  18. J. Graham, N. Tanaka, T. Crilly and M. Alfaro. Modified Cam-Clay modeling of temperature effects in clays. Can Geotech J, 38, 608–621 (2001). [CrossRef] [Google Scholar]
  19. T. Hueckel and R. Pellegrini. Thermoplastic modeling of undrained failure of saturated clay due to heating. Soils Fund, 31, 1-16 (1991). [CrossRef] [Google Scholar]
  20. A. Schofield and P. Worth. Critical State Soil Mechanics (McGraw-Hill, 1968). [Google Scholar]
  21. J. Mandel. Generalisation de la theorie de plasticite de W.T. Koiter. Int. J. Solids Struct, 1, 273–295 (1965). [Google Scholar]
  22. L. Laloui and C. Cekerevac. Numerical simulation of the non-isothermal mechanical behaviour of soils. Comp Geotech, 35, 729-745 (2008). [CrossRef] [Google Scholar]
  23. B. François. Thermo-plasticity of fine-grained soils at various saturation states: application to nuclear waste disposal (PhD thesis, Ecole Polytechnique Fédéral de Lausanne, EPFL, Switzerland, 2008). [Google Scholar]
  24. H. Casimir and D. Polder. The Influence of Retardation on the London-van der Waals Forces. Physical Review, 73, 360–372 (1948). [CrossRef] [Google Scholar]
  25. B. E. Novich and T. A. Ring. Colloid stability of clays using photon correlation spectroscopy. Clays and Clay Minerals, 32, 400 – 406 (1984). [Google Scholar]
  26. J. Mitchell and K. Soga. Fundamentals of Soil Behavior (John Wiley & Sons., 2005). [Google Scholar]
  27. J. P. Quirk and L. A. G. Aylmore. Domains and Quasi‐Crystalline Regions in Clay Systems. Journal of the Soil Science Society of America, 35, 652–654 (1971). [CrossRef] [Google Scholar]
  28. G. Sposito. The Chemistry of Soils (University Press, New York, 1989). [Google Scholar]
  29. F.H. Chen. Foundations on Expansive Soils (Elsevier, New York, NY, 1975). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.