Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 09009
Number of page(s) 6
Section Minisymposium: Engineered Geomaterials for Energy and Environmental Sustainability (organized by Alessandro Rotta Loria)
DOI https://doi.org/10.1051/e3sconf/202020509009
Published online 18 November 2020
  1. M. A. Barlaz, Forest products decomposition in municipal solid waste landfills, W M, 26(4), 321-333. (2006) [Google Scholar]
  2. https://www.epa.gov/sites/production/files/2019-02/documents/us-ghg-inventory-2019-main-text.pdf [Google Scholar]
  3. N. Yeşiller, J. L. Hanson, K. B. Kopp, & E. H, Yee., Heat generation in municipal solid waste landfills, W M, 56, 246-254. (2016) [Google Scholar]
  4. J. T. Powell, T. G. Townsend, & J. B. Zimmerman., Estimates of solid waste disposal rates and reduction targets for landfill gas emissions, N C C, 6(2), 162. (2016) [Google Scholar]
  5. C. J. Coccia, R. Gupta, J. Morris, & J. S McCartney., Municipal solid waste landfills as geothermal heat sources, R & S E R, 19, 463-474. (2013) [Google Scholar]
  6. R. J. Grillo., Energy recycling–landfill waste heat generation and recovery, C S/R E R, 1(4), 150-156. (2014) [Google Scholar]
  7. S. T. S. Yuen, T. A. McMahon & J. R. Styles., Monitoring in situ moisture content of municipal solid waste landfills, J E E, 126(12), 1088-1095. (2000) [Google Scholar]
  8. R. S. Li & C. Zeiss., In situ moisture content measurement in MSW landfills with TDR, E E S, 18(1), 53-66. (2001) [Google Scholar]
  9. T. Plocoste, S. Jacoby-Koaly, R. H. Petit, J. Molinié & A. Roussas., In situ quantification and tracking of volatile organic compounds with a portable mass spectrometer in tropical waste and urban sites, E T, 38(18), 2280-2294. (2017) [Google Scholar]
  10. K. R. Reddy, H. Hettiarachchi, J. Gangathulasi, & J. E. Bogner., Geotechnical properties of municipal solid waste at different phases of biodegradation, W M, 31(11), 2275-2286. (2011) [Google Scholar]
  11. D. Zekkos, Jr. E. Kavazanjian, J. D. Bray, N. Matasovic, & M. F. Riemer., Physical characterization of municipal solid waste for geotechnical purposes, J G G E, 136(9), 1231-1241. (2010) [Google Scholar]
  12. http://geoprobe.com/mip-membrane-interface-probe [Google Scholar]
  13. J. L. Hanson, N. Yeşiller, & N. K. Oettle, Spatial and temporal temperature distributions in municipal solid waste landfills. J E E, 136(8), 804-814. (2010). [Google Scholar]
  14. P. J. Van Geel, & K. E. Murray, Simulating settlement during waste placement at a landfill with waste lifts placed under frozen conditions. W M, 46, 352-361. (2015) [Google Scholar]
  15. T. M. Christy., A permeable membrane sensor for the detection of volatile compounds in soil, S A G E E P 65-72 (1998) [Google Scholar]
  16. W. McCall, T. M. Christy, D. Pipp, M. Terkelsen, A. Christensen, K. Weber & P. Engelsen., The Hydraulic Profiling Tool (HPT) for Hydrogeologic Investigation of Unconsolidated Formations, G M & R, 34(2), 85-95. (2014) [Google Scholar]
  17. S. Grellier, H. Robain, G. Bellier, & N. Skhiri., Influence of temperature on the electrical conductivity of leachate from municipal solid waste, J H M, 137(1), 612-617. (2006) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.